Suppr超能文献

COVID-19 死亡率评估:一项国际多中心研究。

COVID-19 mortality risk assessment: An international multi-center study.

机构信息

Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

出版信息

PLoS One. 2020 Dec 9;15(12):e0243262. doi: 10.1371/journal.pone.0243262. eCollection 2020.

Abstract

Timely identification of COVID-19 patients at high risk of mortality can significantly improve patient management and resource allocation within hospitals. This study seeks to develop and validate a data-driven personalized mortality risk calculator for hospitalized COVID-19 patients. De-identified data was obtained for 3,927 COVID-19 positive patients from six independent centers, comprising 33 different hospitals. Demographic, clinical, and laboratory variables were collected at hospital admission. The COVID-19 Mortality Risk (CMR) tool was developed using the XGBoost algorithm to predict mortality. Its discrimination performance was subsequently evaluated on three validation cohorts. The derivation cohort of 3,062 patients has an observed mortality rate of 26.84%. Increased age, decreased oxygen saturation (≤ 93%), elevated levels of C-reactive protein (≥ 130 mg/L), blood urea nitrogen (≥ 18 mg/dL), and blood creatinine (≥ 1.2 mg/dL) were identified as primary risk factors, validating clinical findings. The model obtains out-of-sample AUCs of 0.90 (95% CI, 0.87-0.94) on the derivation cohort. In the validation cohorts, the model obtains AUCs of 0.92 (95% CI, 0.88-0.95) on Seville patients, 0.87 (95% CI, 0.84-0.91) on Hellenic COVID-19 Study Group patients, and 0.81 (95% CI, 0.76-0.85) on Hartford Hospital patients. The CMR tool is available as an online application at covidanalytics.io/mortality_calculator and is currently in clinical use. The CMR model leverages machine learning to generate accurate mortality predictions using commonly available clinical features. This is the first risk score trained and validated on a cohort of COVID-19 patients from Europe and the United States.

摘要

及时识别 COVID-19 患者的高死亡率风险,可以显著改善医院内患者管理和资源分配。本研究旨在开发和验证一种基于数据驱动的 COVID-19 住院患者个性化死亡率风险计算器。从六个独立中心获得了 3927 名 COVID-19 阳性患者的去标识数据,这些患者来自 33 家不同的医院。在入院时收集了人口统计学、临床和实验室变量。使用 XGBoost 算法开发 COVID-19 死亡率风险(CMR)工具来预测死亡率。随后在三个验证队列上评估其区分性能。包含 3062 名患者的推导队列的观察死亡率为 26.84%。年龄增加、氧饱和度降低(≤93%)、C 反应蛋白水平升高(≥130mg/L)、血尿素氮(≥18mg/dL)和血肌酐(≥1.2mg/dL)被确定为主要危险因素,验证了临床发现。该模型在推导队列中获得了 0.90(95%CI,0.87-0.94)的样本外 AUC。在验证队列中,该模型在塞维利亚患者中获得了 0.92(95%CI,0.88-0.95)的 AUC,在希腊 COVID-19 研究组患者中获得了 0.87(95%CI,0.84-0.91)的 AUC,在哈特福德医院患者中获得了 0.81(95%CI,0.76-0.85)的 AUC。CMR 工具可在 covidanalytics.io/mortality_calculator 上作为在线应用程序获得,目前正在临床使用。CMR 模型利用机器学习利用常用的临床特征生成准确的死亡率预测。这是第一个在欧洲和美国 COVID-19 患者队列上进行训练和验证的风险评分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6680/7725386/cc3ff77cb9d4/pone.0243262.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验