Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.
Department of Systems Biology, Columbia University, New York, NY, USA.
Cell Rep. 2020 Dec 8;33(10):108474. doi: 10.1016/j.celrep.2020.108474.
Bi-species, fusion-mediated, somatic cell reprogramming allows precise, organism-specific tracking of unknown lineage drivers. The fusion of Tcf7l1 murine embryonic stem cells with EBV-transformed human B cell lymphocytes, leads to the generation of bi-species heterokaryons. Human mRNA transcript profiling at multiple time points permits the tracking of the reprogramming of B cell nuclei to a multipotent state. Interrogation of a human B cell regulatory network with gene expression signatures identifies 8 candidate master regulator proteins. Of these 8 candidates, ectopic expression of BAZ2B, from the bromodomain family, efficiently reprograms hematopoietic committed progenitors into a multipotent state and significantly enhances their long-term clonogenicity, stemness, and engraftment in immunocompromised mice. Unbiased systems biology approaches let us identify the early driving events of human B cell reprogramming.
双物种融合介导的体细胞重编程可实现精确的、特定于生物体的未知谱系驱动因子追踪。将 Tcf7l1 小鼠胚胎干细胞与 EBV 转化的人 B 细胞淋巴细胞融合,可导致双物种异核体的产生。在多个时间点对人 mRNA 转录谱进行分析,可跟踪 B 细胞核向多能状态的重编程过程。通过基因表达特征对人 B 细胞调控网络进行分析,鉴定出 8 个候选主调控蛋白。在这 8 个候选蛋白中,来自溴结构域家族的 BAZ2B 的异位表达可有效地将造血定向祖细胞重编程为多能状态,并显著提高其长期克隆形成能力、干性和在免疫缺陷小鼠中的植入能力。无偏倚的系统生物学方法使我们能够鉴定出人 B 细胞重编程的早期驱动事件。