文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用 MetaVIPER 算法对孤儿组织和单细胞中的蛋白质活性进行定量评估。

Quantitative assessment of protein activity in orphan tissues and single cells using the metaVIPER algorithm.

机构信息

Department of Systems Biology, Columbia University, New York, NY, 10032, USA.

Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.

出版信息

Nat Commun. 2018 Apr 16;9(1):1471. doi: 10.1038/s41467-018-03843-3.


DOI:10.1038/s41467-018-03843-3
PMID:29662057
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5902599/
Abstract

We and others have shown that transition and maintenance of biological states is controlled by master regulator proteins, which can be inferred by interrogating tissue-specific regulatory models (interactomes) with transcriptional signatures, using the VIPER algorithm. Yet, some tissues may lack molecular profiles necessary for interactome inference (orphan tissues), or, as for single cells isolated from heterogeneous samples, their tissue context may be undetermined. To address this problem, we introduce metaVIPER, an algorithm designed to assess protein activity in tissue-independent fashion by integrative analysis of multiple, non-tissue-matched interactomes. This assumes that transcriptional targets of each protein will be recapitulated by one or more available interactomes. We confirm the algorithm's value in assessing protein dysregulation induced by somatic mutations, as well as in assessing protein activity in orphan tissues and, most critically, in single cells, thus allowing transformation of noisy and potentially biased RNA-Seq signatures into reproducible protein-activity signatures.

摘要

我们和其他人已经表明,生物状态的转变和维持是由主控调节蛋白控制的,可以通过 VIPER 算法询问组织特异性调节模型(相互作用组)的转录特征来推断。然而,一些组织可能缺乏相互作用组推断所需的分子特征(孤儿组织),或者,对于从异质样本中分离出来的单细胞,其组织背景可能无法确定。为了解决这个问题,我们引入了 metaVIPER,这是一种通过对多个非组织匹配的相互作用组进行综合分析,以独立于组织的方式评估蛋白质活性的算法。这假设每个蛋白质的转录靶标将被一个或多个可用的相互作用组所重现。我们验证了该算法在评估体细胞突变引起的蛋白质失调、评估孤儿组织中的蛋白质活性以及最关键的是在单细胞中的价值,从而将嘈杂和潜在有偏差的 RNA-Seq 特征转化为可重复的蛋白质活性特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd6/5902599/d317f2d3fa2d/41467_2018_3843_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd6/5902599/3d32b2742e0c/41467_2018_3843_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd6/5902599/621c0defa395/41467_2018_3843_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd6/5902599/b636950c987a/41467_2018_3843_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd6/5902599/d317f2d3fa2d/41467_2018_3843_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd6/5902599/3d32b2742e0c/41467_2018_3843_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd6/5902599/621c0defa395/41467_2018_3843_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd6/5902599/b636950c987a/41467_2018_3843_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd6/5902599/d317f2d3fa2d/41467_2018_3843_Fig4_HTML.jpg

相似文献

[1]
Quantitative assessment of protein activity in orphan tissues and single cells using the metaVIPER algorithm.

Nat Commun. 2018-4-16

[2]
An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma.

Cell. 2019-7-18

[3]
New insights for precision treatment of glioblastoma from analysis of single-cell lncRNA expression.

J Cancer Res Clin Oncol. 2021-7

[4]
Analyzing Differential Regulatory Networks Modulated by Continuous-State Genomic Features in Glioblastoma Multiforme.

IEEE/ACM Trans Comput Biol Bioinform. 2016-12-5

[5]
Proteogenomics of glioblastoma associates molecular patterns with survival.

Cell Rep. 2021-3-2

[6]
A Core Regulatory Circuit in Glioblastoma Stem Cells Links MAPK Activation to a Transcriptional Program of Neural Stem Cell Identity.

Sci Rep. 2017-3-3

[7]
Integration of RNA-Seq and proteomics data identifies glioblastoma multiforme surfaceome signature.

BMC Cancer. 2021-7-23

[8]
Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression.

J Clin Invest. 2014-7

[9]
Altered transcriptional regulatory proteins in glioblastoma and YBX1 as a potential regulator of tumor invasion.

Sci Rep. 2019-7-29

[10]
Cell Lineage-Based Stratification for Glioblastoma.

Cancer Cell. 2020-9-14

引用本文的文献

[1]
Accurate Transcription Factor Activity Inference to Decipher Cell Identity from Single-Cell Transcriptomic Data with MetaTF.

Adv Sci (Weinh). 2025-6

[2]
Identification and targeting of regulators of SARS-CoV-2-host interactions in the airway epithelium.

Sci Adv. 2025-5-16

[3]
A computational tool to infer enzyme activity using post-translational modification profiling data.

Commun Biol. 2025-1-21

[4]
Causal genes identification of giant cell arteritis in CD4+ Memory t cells: an integration of multi-omics and expression quantitative trait locus analysis.

Inflamm Res. 2025-1-7

[5]
Antileukemia efficacy of the dual BCL2/BCL-XL inhibitor AZD0466 in acute lymphoblastic leukemia preclinical models.

Blood Adv. 2025-2-11

[6]
Identification and Targeting of Regulators of SARS-CoV-2-Host Interactions in the Airway Epithelium.

bioRxiv. 2024-12-9

[7]
Exon inclusion signatures enable accurate estimation of splicing factor activity.

bioRxiv. 2025-1-30

[8]
Isthmus progenitor cells contribute to homeostatic cellular turnover and support regeneration following intestinal injury.

Cell. 2024-6-6

[9]
Identification and Pharmacological Targeting of Treatment-Resistant, Stem-like Breast Cancer Cells for Combination Therapy.

bioRxiv. 2025-2-12

[10]
Epigenetic targeting of PGBD5-dependent DNA damage in SMARCB1-deficient sarcomas.

bioRxiv. 2025-3-7

本文引用的文献

[1]
Normalizing single-cell RNA sequencing data: challenges and opportunities.

Nat Methods. 2017-6

[2]
A computational systems approach identifies synergistic specification genes that facilitate lineage conversion to prostate tissue.

Nat Commun. 2017-4-21

[3]
Pillars Article: Control of Regulatory T Cell Development by the Transcription Factor Foxp3. Science 2003. 299: 1057-1061.

J Immunol. 2017-2-1

[4]
The recurrent architecture of tumour initiation, progression and drug sensitivity.

Nat Rev Cancer. 2017-2

[5]
Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation.

Science. 2016-6-24

[6]
Functional characterization of somatic mutations in cancer using network-based inference of protein activity.

Nat Genet. 2016-8

[7]
Beta-Poisson model for single-cell RNA-seq data analyses.

Bioinformatics. 2016-4-19

[8]
Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.

Science. 2016-4-8

[9]
Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma.

Cell. 2016-1-28

[10]
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data.

Genome Biol. 2015-12-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索