Department of Systems Biology, Columbia University, New York, NY, 10032, USA.
Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
Nat Commun. 2018 Apr 16;9(1):1471. doi: 10.1038/s41467-018-03843-3.
We and others have shown that transition and maintenance of biological states is controlled by master regulator proteins, which can be inferred by interrogating tissue-specific regulatory models (interactomes) with transcriptional signatures, using the VIPER algorithm. Yet, some tissues may lack molecular profiles necessary for interactome inference (orphan tissues), or, as for single cells isolated from heterogeneous samples, their tissue context may be undetermined. To address this problem, we introduce metaVIPER, an algorithm designed to assess protein activity in tissue-independent fashion by integrative analysis of multiple, non-tissue-matched interactomes. This assumes that transcriptional targets of each protein will be recapitulated by one or more available interactomes. We confirm the algorithm's value in assessing protein dysregulation induced by somatic mutations, as well as in assessing protein activity in orphan tissues and, most critically, in single cells, thus allowing transformation of noisy and potentially biased RNA-Seq signatures into reproducible protein-activity signatures.
我们和其他人已经表明,生物状态的转变和维持是由主控调节蛋白控制的,可以通过 VIPER 算法询问组织特异性调节模型(相互作用组)的转录特征来推断。然而,一些组织可能缺乏相互作用组推断所需的分子特征(孤儿组织),或者,对于从异质样本中分离出来的单细胞,其组织背景可能无法确定。为了解决这个问题,我们引入了 metaVIPER,这是一种通过对多个非组织匹配的相互作用组进行综合分析,以独立于组织的方式评估蛋白质活性的算法。这假设每个蛋白质的转录靶标将被一个或多个可用的相互作用组所重现。我们验证了该算法在评估体细胞突变引起的蛋白质失调、评估孤儿组织中的蛋白质活性以及最关键的是在单细胞中的价值,从而将嘈杂和潜在有偏差的 RNA-Seq 特征转化为可重复的蛋白质活性特征。
J Cancer Res Clin Oncol. 2021-7
IEEE/ACM Trans Comput Biol Bioinform. 2016-12-5
Cancer Cell. 2020-9-14
Nat Methods. 2017-6
Nat Rev Cancer. 2017-2
Bioinformatics. 2016-4-19