Suppr超能文献

高通量分析表明,期刊错误发现率因学科领域和影响因子而异,但与开放获取状态无关。

High-throughput analysis suggests differences in journal false discovery rate by subject area and impact factor but not open access status.

机构信息

Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA.

Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA.

出版信息

BMC Bioinformatics. 2020 Dec 9;21(1):564. doi: 10.1186/s12859-020-03817-7.

Abstract

BACKGROUND

A low replication rate has been reported in some scientific areas motivating the creation of resource intensive collaborations to estimate the replication rate by repeating individual studies. The substantial resources required by these projects limits the number of studies that can be repeated and consequently the generalizability of the findings. We extend the use of a method from Jager and Leek to estimate the false discovery rate for 94 journals over a 5-year period using p values from over 30,000 abstracts enabling the study of how the false discovery rate varies by journal characteristics.

RESULTS

We find that the empirical false discovery rate is higher for cancer versus general medicine journals (p = 9.801E-07, 95% CI: 0.045, 0.097; adjusted mean false discovery rate cancer = 0.264 vs. general medicine = 0.194). We also find that false discovery rate is negatively associated with log journal impact factor. A two-fold decrease in journal impact factor is associated with an average increase of 0.020 in FDR (p = 2.545E-04). Conversely, we find no statistically significant evidence of a higher false discovery rate, on average, for Open Access versus closed access journals (p = 0.320, 95% CI - 0.015, 0.046, adjusted mean false discovery rate Open Access = 0.241 vs. closed access = 0.225).

CONCLUSIONS

Our results identify areas of research that may need additional scrutiny and support to facilitate replicable science. Given our publicly available R code and data, others can complete a broad assessment of the empirical false discovery rate across other subject areas and characteristics of published research.

摘要

背景

在一些科学领域,复制率较低,这促使人们创建资源密集型合作关系,通过重复个别研究来估计复制率。这些项目需要大量资源,限制了可以重复的研究数量,从而限制了研究结果的普遍性。我们扩展了 Jager 和 Leek 的方法的使用,使用来自 3 万多个摘要的 p 值,在 5 年内估计了 94 种期刊的错误发现率,从而能够研究错误发现率如何随期刊特征而变化。

结果

我们发现癌症期刊的经验错误发现率高于普通医学期刊(p=9.801E-07,95%CI:0.045,0.097;调整后的癌症期刊错误发现率中位数=0.264,普通医学期刊错误发现率中位数=0.194)。我们还发现错误发现率与日志影响因子的对数呈负相关。期刊影响因子降低一倍,平均 FDR 增加 0.020(p=2.545E-04)。相反,我们没有发现开放获取期刊的错误发现率平均高于封闭获取期刊的统计学证据(p=0.320,95%CI-0.015,0.046,调整后的开放获取期刊错误发现率中位数=0.241,封闭获取期刊错误发现率中位数=0.225)。

结论

我们的研究结果确定了可能需要额外审查和支持的研究领域,以促进可复制的科学。鉴于我们公开的 R 代码和数据,其他人可以在其他学科领域和已发表研究的特征方面广泛评估经验错误发现率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b71/7724881/0410666ed0a1/12859_2020_3817_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验