Emerging Diagnostic and Investigative Technologies, Clinical Genomics and Advanced Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA.
Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
Mod Pathol. 2021 Apr;34(4):808-822. doi: 10.1038/s41379-020-00718-1. Epub 2020 Dec 9.
Non-alcoholic steatohepatitis (NASH) is a fatty liver disease characterized by accumulation of fat in hepatocytes with concurrent inflammation and is associated with morbidity, cirrhosis and liver failure. After extraction of a liver core biopsy, tissue sections are stained with hematoxylin and eosin (H&E) to grade NASH activity, and stained with trichrome to stage fibrosis. Methods to computationally transform one stain into another on digital whole slide images (WSI) can lessen the need for additional physical staining besides H&E, reducing personnel, equipment, and time costs. Generative adversarial networks (GAN) have shown promise for virtual staining of tissue. We conducted a large-scale validation study of the viability of GANs for H&E to trichrome conversion on WSI (n = 574). Pathologists were largely unable to distinguish real images from virtual/synthetic images given a set of twelve Turing Tests. We report high correlation between staging of real and virtual stains ([Formula: see text]; 95% CI: 0.84-0.88). Stages assigned to both virtual and real stains correlated similarly with a number of clinical biomarkers and progression to End Stage Liver Disease (Hazard Ratio HR = 2.06, 95% CI: 1.36-3.12, p < 0.001 for real stains; HR = 2.02, 95% CI: 1.40-2.92, p < 0.001 for virtual stains). Our results demonstrate that virtual trichrome technologies may offer a software solution that can be employed in the clinical setting as a diagnostic decision aid.
非酒精性脂肪性肝炎(NASH)是一种以肝细胞脂肪堆积为特征的肝脏疾病,伴有炎症,与发病率、肝硬化和肝功能衰竭有关。在提取肝芯活检后,用苏木精和伊红(H&E)对组织切片进行染色以分级 NASH 活动度,并使用三色染色法对纤维化进行分期。在数字全切片图像(WSI)上将一种染色转换为另一种染色的计算方法可以减少除 H&E 以外的其他物理染色的需求,从而降低人员、设备和时间成本。生成对抗网络(GAN)已显示出在组织虚拟染色方面的潜力。我们对 GAN 用于 WSI 上 H&E 到三色转换的可行性进行了大规模验证研究(n=574)。在十二项图灵测试中,病理学家几乎无法区分真实图像和虚拟/合成图像。我们报告了真实和虚拟染色之间分期的高度相关性([公式:见正文];95%置信区间:0.84-0.88)。分配给虚拟和真实染色的分期与许多临床生物标志物和进展为终末期肝病(真实染色的危险比 HR=2.06,95%置信区间:1.36-3.12,p<0.001;虚拟染色的 HR=2.02,95%置信区间:1.40-2.92,p<0.001)具有相似相关性。我们的结果表明,虚拟三色技术可能提供一种软件解决方案,可作为诊断决策辅助工具在临床环境中使用。