Suppr超能文献

一种用于虚拟组织染色和数字病理学中幻觉检测的强大且可扩展的框架。

A robust and scalable framework for hallucination detection in virtual tissue staining and digital pathology.

作者信息

Huang Luzhe, Li Yuzhu, Pillar Nir, Keidar Haran Tal, Wallace William Dean, Ozcan Aydogan

机构信息

Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.

Bioengineering Department, University of California, Los Angeles, CA, USA.

出版信息

Nat Biomed Eng. 2025 Jun 16. doi: 10.1038/s41551-025-01421-9.

Abstract

Histopathological staining of human tissue is essential for disease diagnosis. Recent advances in virtual tissue staining technologies using artificial intelligence alleviate some of the costly and tedious steps involved in traditional histochemical staining processes, permitting multiplexed staining and tissue preservation. However, potential hallucinations and artefacts in these virtually stained tissue images pose concerns, especially for the clinical uses of these approaches. Quality assessment of histology images by experts can be subjective. Here we present an autonomous quality and hallucination assessment method, AQuA, for virtual tissue staining and digital pathology. AQuA autonomously achieves 99.8% accuracy when detecting acceptable and unacceptable virtually stained tissue images without access to histochemically stained ground truth and presents an agreement of 98.5% with the manual assessments made by board-certified pathologists, including identifying realistic-looking images that could mislead diagnosticians. We demonstrate the wide adaptability of AQuA across various virtually and histochemically stained human tissue images. This framework enhances the reliability of virtual tissue staining and provides autonomous quality assurance for image generation and transformation tasks in digital pathology and computational imaging.

摘要

人体组织的组织病理学染色对于疾病诊断至关重要。利用人工智能的虚拟组织染色技术的最新进展减轻了传统组织化学染色过程中一些成本高昂且繁琐的步骤,实现了多重染色和组织保存。然而,这些虚拟染色组织图像中潜在的幻觉和伪像引发了担忧,尤其是对于这些方法的临床应用。专家对组织学图像的质量评估可能具有主观性。在此,我们提出了一种用于虚拟组织染色和数字病理学的自主质量和幻觉评估方法AQuA。在无法获取组织化学染色真值的情况下,AQuA在检测可接受和不可接受的虚拟染色组织图像时自主实现了99.8%的准确率,并且与经董事会认证的病理学家进行的手动评估达成了98.5%的一致性,包括识别可能误导诊断医生的逼真图像。我们展示了AQuA在各种虚拟和组织化学染色的人体组织图像上的广泛适应性。该框架提高了虚拟组织染色的可靠性,并为数字病理学和计算成像中的图像生成和转换任务提供了自主质量保证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验