Suppr超能文献

一种用于模拟免疫组织化学的机器学习算法:SOX10 虚拟免疫组化的开发及其在原发性黑色素细胞肿瘤中的评估。

A machine learning algorithm for simulating immunohistochemistry: development of SOX10 virtual IHC and evaluation on primarily melanocytic neoplasms.

机构信息

Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.

出版信息

Mod Pathol. 2020 Sep;33(9):1638-1648. doi: 10.1038/s41379-020-0526-z. Epub 2020 Apr 1.

Abstract

Immunohistochemistry (IHC) is a diagnostic technique used throughout pathology. A machine learning algorithm that could predict individual cell immunophenotype based on hematoxylin and eosin (H&E) staining would save money, time, and reduce tissue consumed. Prior approaches have lacked the spatial accuracy needed for cell-specific analytical tasks. Here IHC performed on destained H&E slides is used to create a neural network that is potentially capable of predicting individual cell immunophenotype. Twelve slides were stained with H&E and scanned to create digital whole slide images. The H&E slides were then destained, and stained with SOX10 IHC. The SOX10 IHC slides were scanned, and corresponding H&E and IHC digital images were registered. Color-thresholding and machine learning techniques were applied to the registered H&E and IHC images to segment 3,396,668 SOX10-negative cells and 306,166 SOX10-positive cells. The resulting segmentation was used to annotate the original H&E images, and a convolutional neural network was trained to predict SOX10 nuclear staining. Sixteen thousand three hundred and nine image patches were used to train the virtual IHC (vIHC) neural network, and 1,813 image patches were used to quantitatively evaluate it. The resulting vIHC neural network achieved an area under the curve of 0.9422 in a receiver operator characteristics analysis when sorting individual nuclei. The vIHC network was applied to additional images from clinical practice, and was evaluated qualitatively by a board-certified dermatopathologist. Further work is needed to make the process more efficient and accurate for clinical use. This proof-of-concept demonstrates the feasibility of creating neural network-driven vIHC assays.

摘要

免疫组织化学(IHC)是病理学中广泛应用的一种诊断技术。如果有一种机器学习算法能够根据苏木精和伊红(H&E)染色预测单个细胞免疫表型,将有助于节省资金、时间并减少组织消耗。但以前的方法缺乏用于细胞特异性分析任务所需的空间准确性。在这里,我使用经过褪色 H&E 载玻片进行免疫组化,以创建一个潜在能够预测单个细胞免疫表型的神经网络。我们共对 12 张载玻片进行 H&E 染色并扫描,以创建数字全玻片图像。然后对 H&E 载玻片进行褪色,并进行 SOX10 IHC 染色。扫描 SOX10 IHC 载玻片,并对相应的 H&E 和 IHC 数字图像进行配准。应用颜色阈值和机器学习技术对配准的 H&E 和 IHC 图像进行分割,得到 3,396,668 个 SOX10 阴性细胞和 306,166 个 SOX10 阳性细胞。分割结果用于注释原始 H&E 图像,并训练卷积神经网络来预测 SOX10 核染色。我们使用 16,309 个图像块来训练虚拟 IHC(vIHC)神经网络,并使用 1,813 个图像块对其进行定量评估。在对单个细胞核进行排序的受试者工作特征分析中,vIHC 神经网络的曲线下面积达到 0.9422。将 vIHC 网络应用于来自临床实践的附加图像,并由经过董事会认证的皮肤科病理学家进行定性评估。进一步的工作是为了使该过程更加高效和准确,以满足临床应用的需求。这一概念验证证明了创建基于神经网络的 vIHC 检测的可行性。

相似文献

6
Detection of Occult Invasion in Melanoma In Situ.原位黑色素瘤隐匿性浸润的检测。
JAMA Dermatol. 2016 Nov 1;152(11):1201-1208. doi: 10.1001/jamadermatol.2016.2668.

引用本文的文献

7
Digital pathology systems enabling quality patient care.数字病理学系统实现优质患者护理。
Genes Chromosomes Cancer. 2023 Nov;62(11):685-697. doi: 10.1002/gcc.23192. Epub 2023 Jul 17.

本文引用的文献

1
Artificial intelligence, bias and clinical safety.人工智能、偏差与临床安全。
BMJ Qual Saf. 2019 Mar;28(3):231-237. doi: 10.1136/bmjqs-2018-008370. Epub 2019 Jan 12.
6
Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections.深度学习移植肾冷冻切片中的全球肾小球硬化症。
IEEE Trans Med Imaging. 2018 Dec;37(12):2718-2728. doi: 10.1109/TMI.2018.2851150. Epub 2018 Jun 27.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验