Suppr超能文献

使用快速独立成分分析模拟视网膜神经节细胞反应。

Simulation of retinal ganglion cell response using fast independent component analysis.

作者信息

Wang Guanzheng, Wang Rubin, Kong Wanzheng, Zhang Jianhai

机构信息

2Institute for Cognitive Neurodynamics, School of Science, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 China.

1College of Computer Science, Hangzhou Dianzi University, Zhejiang, China.

出版信息

Cogn Neurodyn. 2018 Dec;12(6):615-624. doi: 10.1007/s11571-018-9490-4. Epub 2018 Jul 7.

Abstract

Advances in neurobiology suggest that neuronal response of the primary visual cortex to natural stimuli may be attributed to sparse approximation of images, encoding stimuli to activate specific neurons although the underlying mechanisms are still unclear. The responses of retinal ganglion cells (RGCs) to natural and random checkerboard stimuli were simulated using fast independent component analysis. The neuronal response to stimuli was measured using kurtosis and Treves-Rolls sparseness, and the kurtosis, lifetime and population sparseness were analyzed. RGCs exhibited significant lifetime sparseness in response to natural stimuli and random checkerboard stimuli. About 65 and 72% of RGCs do not fire all the time in response to natural and random checkerboard stimuli, respectively. Both kurtosis of single neurons and lifetime response of single neurons values were larger in the case of natural than in random checkerboard stimuli. The population of RGCs fire much less in response to random checkerboard stimuli than natural stimuli. However, kurtosis of population sparseness and population response of the entire neurons were larger with natural than random checkerboard stimuli. RGCs fire more sparsely in response to natural stimuli. Individual neurons fire at a low rate, while the occasional "burst" of neuronal population transmits information efficiently.

摘要

神经生物学的进展表明,初级视觉皮层对自然刺激的神经元反应可能归因于图像的稀疏逼近,即对刺激进行编码以激活特定神经元,尽管其潜在机制仍不清楚。使用快速独立成分分析模拟了视网膜神经节细胞(RGC)对自然和随机棋盘格刺激的反应。使用峰度和Treves-Rolls稀疏性来测量神经元对刺激的反应,并分析了峰度、寿命和群体稀疏性。RGC对自然刺激和随机棋盘格刺激表现出显著的寿命稀疏性。分别约有65%和72%的RGC在对自然和随机棋盘格刺激的反应中并非一直放电。在自然刺激的情况下,单个神经元的峰度和单个神经元的寿命反应值均大于随机棋盘格刺激。RGC群体对随机棋盘格刺激的放电比自然刺激少得多。然而,自然刺激下群体稀疏性的峰度和整个神经元的群体反应比随机棋盘格刺激更大。RGC对自然刺激的放电更稀疏。单个神经元放电率较低,而神经元群体偶尔的“爆发”能有效地传递信息。

相似文献

7
Comparison of IT Neural Response Statistics with Simulations.IT神经反应统计数据与模拟结果的比较。
Front Comput Neurosci. 2017 Jul 12;11:60. doi: 10.3389/fncom.2017.00060. eCollection 2017.
8
Sparse coding in striate and extrastriate visual cortex.纹状和皮层外视皮质中的稀疏编码。
J Neurophysiol. 2011 Jun;105(6):2907-19. doi: 10.1152/jn.00594.2010. Epub 2011 Apr 6.

引用本文的文献

5
Artificial Visual Information Produced by Retinal Prostheses.视网膜假体产生的人工视觉信息。
Front Cell Neurosci. 2022 Jun 6;16:911754. doi: 10.3389/fncel.2022.911754. eCollection 2022.
6
The Relationship between Sparseness and Energy Consumption of Neural Networks.神经网络稀疏性与能耗的关系。
Neural Plast. 2020 Nov 25;2020:8848901. doi: 10.1155/2020/8848901. eCollection 2020.
9
Energy expenditure computation of a single bursting neuron.单个爆发神经元的能量消耗计算
Cogn Neurodyn. 2019 Feb;13(1):75-87. doi: 10.1007/s11571-018-9503-3. Epub 2018 Sep 3.

本文引用的文献

4
From abstract topology to real thermodynamic brain activity.从抽象拓扑到真实的脑热力学活动。
Cogn Neurodyn. 2017 Jun;11(3):283-292. doi: 10.1007/s11571-017-9431-7. Epub 2017 Mar 14.
5
The feeling of understanding: an exploration with neural models.理解的感觉:用神经模型进行的探索。
Cogn Neurodyn. 2017 Apr;11(2):135-146. doi: 10.1007/s11571-016-9414-0. Epub 2016 Oct 21.
8
The oscillation-like activity in bullfrog ON-OFF retinal ganglion cell.牛蛙开-关视网膜神经节细胞中的振荡样活动。
Cogn Neurodyn. 2016 Dec;10(6):481-493. doi: 10.1007/s11571-016-9397-x. Epub 2016 Jul 20.
9
Frequency Responses of Rat Retinal Ganglion Cells.
PLoS One. 2016 Jun 24;11(6):e0157676. doi: 10.1371/journal.pone.0157676. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验