Suppr超能文献

使用快速独立成分分析模拟视网膜神经节细胞反应。

Simulation of retinal ganglion cell response using fast independent component analysis.

作者信息

Wang Guanzheng, Wang Rubin, Kong Wanzheng, Zhang Jianhai

机构信息

2Institute for Cognitive Neurodynamics, School of Science, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 China.

1College of Computer Science, Hangzhou Dianzi University, Zhejiang, China.

出版信息

Cogn Neurodyn. 2018 Dec;12(6):615-624. doi: 10.1007/s11571-018-9490-4. Epub 2018 Jul 7.

Abstract

Advances in neurobiology suggest that neuronal response of the primary visual cortex to natural stimuli may be attributed to sparse approximation of images, encoding stimuli to activate specific neurons although the underlying mechanisms are still unclear. The responses of retinal ganglion cells (RGCs) to natural and random checkerboard stimuli were simulated using fast independent component analysis. The neuronal response to stimuli was measured using kurtosis and Treves-Rolls sparseness, and the kurtosis, lifetime and population sparseness were analyzed. RGCs exhibited significant lifetime sparseness in response to natural stimuli and random checkerboard stimuli. About 65 and 72% of RGCs do not fire all the time in response to natural and random checkerboard stimuli, respectively. Both kurtosis of single neurons and lifetime response of single neurons values were larger in the case of natural than in random checkerboard stimuli. The population of RGCs fire much less in response to random checkerboard stimuli than natural stimuli. However, kurtosis of population sparseness and population response of the entire neurons were larger with natural than random checkerboard stimuli. RGCs fire more sparsely in response to natural stimuli. Individual neurons fire at a low rate, while the occasional "burst" of neuronal population transmits information efficiently.

摘要

神经生物学的进展表明,初级视觉皮层对自然刺激的神经元反应可能归因于图像的稀疏逼近,即对刺激进行编码以激活特定神经元,尽管其潜在机制仍不清楚。使用快速独立成分分析模拟了视网膜神经节细胞(RGC)对自然和随机棋盘格刺激的反应。使用峰度和Treves-Rolls稀疏性来测量神经元对刺激的反应,并分析了峰度、寿命和群体稀疏性。RGC对自然刺激和随机棋盘格刺激表现出显著的寿命稀疏性。分别约有65%和72%的RGC在对自然和随机棋盘格刺激的反应中并非一直放电。在自然刺激的情况下,单个神经元的峰度和单个神经元的寿命反应值均大于随机棋盘格刺激。RGC群体对随机棋盘格刺激的放电比自然刺激少得多。然而,自然刺激下群体稀疏性的峰度和整个神经元的群体反应比随机棋盘格刺激更大。RGC对自然刺激的放电更稀疏。单个神经元放电率较低,而神经元群体偶尔的“爆发”能有效地传递信息。

相似文献

1
Simulation of retinal ganglion cell response using fast independent component analysis.
Cogn Neurodyn. 2018 Dec;12(6):615-624. doi: 10.1007/s11571-018-9490-4. Epub 2018 Jul 7.
2
Characterizing the sparseness of neural codes.
Network. 2001 Aug;12(3):255-70.
3
The sparseness of neuronal responses in ferret primary visual cortex.
J Neurosci. 2009 Feb 25;29(8):2355-70. doi: 10.1523/JNEUROSCI.3869-08.2009.
4
Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex.
J Neurophysiol. 1995 Feb;73(2):713-26. doi: 10.1152/jn.1995.73.2.713.
5
Visual pattern discrimination by population retinal ganglion cells' activities during natural movie stimulation.
Cogn Neurodyn. 2014 Feb;8(1):27-35. doi: 10.1007/s11571-013-9266-9. Epub 2013 Aug 14.
6
Stimulus discrimination via responses of retinal ganglion cells and dopamine-dependent modulation.
Neurosci Bull. 2013 Oct;29(5):621-32. doi: 10.1007/s12264-013-1368-1. Epub 2013 Aug 29.
7
Comparison of IT Neural Response Statistics with Simulations.
Front Comput Neurosci. 2017 Jul 12;11:60. doi: 10.3389/fncom.2017.00060. eCollection 2017.
8
Sparse coding in striate and extrastriate visual cortex.
J Neurophysiol. 2011 Jun;105(6):2907-19. doi: 10.1152/jn.00594.2010. Epub 2011 Apr 6.
9
Nonlinear Spatial Integration Underlies the Diversity of Retinal Ganglion Cell Responses to Natural Images.
J Neurosci. 2021 Apr 14;41(15):3479-3498. doi: 10.1523/JNEUROSCI.3075-20.2021. Epub 2021 Mar 4.
10
Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex.
Biol Cybern. 2007 Jun;96(6):547-60. doi: 10.1007/s00422-007-0149-1. Epub 2007 Apr 5.

引用本文的文献

1
Dual-Mode Photonic Synapse Based on a Lead-Free 2D Ruddlesden-Popper Perovskite for Neuromorphic Vision.
ACS Appl Mater Interfaces. 2025 Aug 27;17(34):48547-48554. doi: 10.1021/acsami.5c10557. Epub 2025 Aug 16.
2
Bio-Inspired Ionic Sensors: Transforming Natural Mechanisms into Sensory Technologies.
Nanomicro Lett. 2025 Mar 12;17(1):180. doi: 10.1007/s40820-025-01692-6.
4
Emerging photoelectric devices for neuromorphic vision applications: principles, developments, and outlooks.
Sci Technol Adv Mater. 2023 Mar 28;24(1):2186689. doi: 10.1080/14686996.2023.2186689. eCollection 2023.
5
Artificial Visual Information Produced by Retinal Prostheses.
Front Cell Neurosci. 2022 Jun 6;16:911754. doi: 10.3389/fncel.2022.911754. eCollection 2022.
6
The Relationship between Sparseness and Energy Consumption of Neural Networks.
Neural Plast. 2020 Nov 25;2020:8848901. doi: 10.1155/2020/8848901. eCollection 2020.
7
NeuroConstruct-based implementation of structured-light stimulated retinal circuitry.
BMC Neurosci. 2020 Jun 24;21(1):28. doi: 10.1186/s12868-020-00578-0.
9
Energy expenditure computation of a single bursting neuron.
Cogn Neurodyn. 2019 Feb;13(1):75-87. doi: 10.1007/s11571-018-9503-3. Epub 2018 Sep 3.

本文引用的文献

1
The human brain from above: an increase in complexity from environmental stimuli to abstractions.
Cogn Neurodyn. 2017 Aug;11(4):391-394. doi: 10.1007/s11571-017-9428-2. Epub 2017 Mar 29.
2
Scale-freeness of dominant and piecemeal perceptions during binocular rivalry.
Cogn Neurodyn. 2017 Aug;11(4):319-326. doi: 10.1007/s11571-017-9434-4. Epub 2017 Mar 25.
3
Involvement of the visual change detection process in facilitating perceptual alternation in the bistable image.
Cogn Neurodyn. 2017 Aug;11(4):307-318. doi: 10.1007/s11571-017-9430-8. Epub 2017 Mar 24.
4
From abstract topology to real thermodynamic brain activity.
Cogn Neurodyn. 2017 Jun;11(3):283-292. doi: 10.1007/s11571-017-9431-7. Epub 2017 Mar 14.
5
The feeling of understanding: an exploration with neural models.
Cogn Neurodyn. 2017 Apr;11(2):135-146. doi: 10.1007/s11571-016-9414-0. Epub 2016 Oct 21.
6
Optimal path-finding through mental exploration based on neural energy field gradients.
Cogn Neurodyn. 2017 Feb;11(1):99-111. doi: 10.1007/s11571-016-9412-2. Epub 2016 Sep 30.
7
Effect of different glucose supply conditions on neuronal energy metabolism.
Cogn Neurodyn. 2016 Dec;10(6):563-571. doi: 10.1007/s11571-016-9401-5. Epub 2016 Aug 25.
8
The oscillation-like activity in bullfrog ON-OFF retinal ganglion cell.
Cogn Neurodyn. 2016 Dec;10(6):481-493. doi: 10.1007/s11571-016-9397-x. Epub 2016 Jul 20.
9
Frequency Responses of Rat Retinal Ganglion Cells.
PLoS One. 2016 Jun 24;11(6):e0157676. doi: 10.1371/journal.pone.0157676. eCollection 2016.
10
Temporal properties of dual-peak responses of mouse retinal ganglion cells and effects of inhibitory pathways.
Cogn Neurodyn. 2016 Jun;10(3):211-23. doi: 10.1007/s11571-015-9374-9. Epub 2016 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验