Liu Lina, Lim Siew Yee, Law Cheryl Suwen, Jin Bo, Abell Andrew D, Ni Gang, Santos Abel
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia.
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China.
ACS Appl Mater Interfaces. 2020 Dec 23;12(51):57079-57092. doi: 10.1021/acsami.0c16914. Epub 2020 Dec 10.
A new class of semiconductor photonic crystals composed of titanium dioxide (TiO)-functionalized nanoporous anodic alumina (NAA) broadband-distributed Bragg reflectors (BDBRs) for visible-light-driven photocatalysis is presented. NAA-BDBRs produced by double exponential pulse anodization (DEPA) show well-resolved, spectrally tunable, broad photonic stop bands (PSBs), the width of which can be precisely tuned from 70 ± 6 to 153 ± 9 nm (in air) by progressive modification of the anodization period in the input DEPA profile. Photocatalytic efficiency of TiO-NAA-BDBRs with tunable PSB width upon visible-NIR illumination is studied using three model photodegradation reactions of organics with absorbance bands across the visible spectral regions. Analysis of these reactions allows us to elucidate the interplay of spectral distance between red edge of TiO-NAA-BDBRs' PSB, electronic bandgap, and absorbance band of model organics in harnessing visible photons for photocatalysis. Photodegradation reaction efficiency is optimal when the PSB's red edge is spectrally close to the electronic bandgap of the functional semiconductor coating. Photocatalytic performance decreases dramatically when the red edge of the PSB is shifted toward visible wavelengths. However, a photocatalytic recovery is observed when the PSB's red edge is judiciously positioned within the proximity of the absorption band of model organics, indicating that TiO-NAA-BDBRs can harness visible electromagnetic waves to speed up photocatalytic reactions by drastically slowing the group velocity of incident photons at specific spectral regions. Our advances provide new opportunities to better understand and engineer light-matter interactions for photocatalysis, using TiO-NAA-BDBRs as model nanoporous semiconductor platforms. These high-performing photocatalysts could find broad applicability in visible-NIR light harvesting for environmental remediation, green energy generation, and chemical synthesis.
本文介绍了一种新型的半导体光子晶体,它由二氧化钛(TiO)功能化的纳米多孔阳极氧化铝(NAA)宽带分布式布拉格反射器(BDBR)组成,用于可见光驱动的光催化。通过双指数脉冲阳极氧化(DEPA)制备的NAA-BDBR显示出分辨率良好、光谱可调的宽光子禁带(PSB),通过逐步改变输入DEPA曲线中的阳极氧化周期,其宽度可在空气中从70±6纳米精确调整到153±9纳米。利用三种在可见光谱区域具有吸收带的有机物模型光降解反应,研究了具有可调PSB宽度的TiO-NAA-BDBR在可见光-近红外光照射下的光催化效率。对这些反应的分析使我们能够阐明TiO-NAA-BDBR的PSB红边、电子带隙和模型有机物吸收带之间的光谱距离在利用可见光子进行光催化中的相互作用。当PSB的红边在光谱上接近功能半导体涂层的电子带隙时,光降解反应效率最佳。当PSB的红边向可见波长移动时,光催化性能会急剧下降。然而,当PSB的红边明智地定位在模型有机物吸收带附近时,会观察到光催化恢复,这表明TiO-NAA-BDBR可以利用可见电磁波,通过在特定光谱区域大幅减慢入射光子的群速度来加速光催化反应。我们的进展为更好地理解和设计用于光催化的光-物质相互作用提供了新机会,以TiO-NAA-BDBR作为模型纳米多孔半导体平台。这些高性能光催化剂在用于环境修复、绿色能源生产和化学合成的可见光-近红外光捕获方面具有广泛的应用前景。