Law Cheryl Suwen, Lim Siew Yee, Santos Abel
School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, 5005, Adelaide, Australia.
Sci Rep. 2018 Mar 15;8(1):4642. doi: 10.1038/s41598-018-22895-5.
This study presents a nanofabrication approach that enables the production of nanoporous anodic alumina distributed Bragg reflectors (NAA-DBRs) with finely engineered light filtering features across the spectral regions. The photonic stopband (PSB) of these NAA-based photonic crystal (PC) structures is precisely tuned by an apodization strategy applied during stepwise pulse anodization with the aim of engineering the effective medium of NAA-DBRs in depth. We systematically assess the effect of different fabrication parameters such as apodization function (i.e. linear positive, linear negative, logarithmic positive and logarithmic negative), amplitude difference (from 0.105 to 0.420 mA cm), current density offset (from 0.140 to 0.560 mA cm), anodization period (from 1100 to 1700 s), and pore widening time (from 0 to 6 min) on the quality and central wavelength of the PSB of NAA-DBRs. The PSB's features these PC structures are demonstrated to be highly tunable with the fabrication parameters, where a logarithmic negative apodization is found to be the most effective function to produce NAA-DBRs with high quality PSBs across the UV-visible-NIR spectrum. Our study establishes that apodized NAA-DBRs are more sensitive to changes in their effective medium than non-apodized NAA-DBRs, making them more suitable sensing platforms to develop advanced optical sensing systems.
本研究提出了一种纳米制造方法,该方法能够生产具有跨光谱区域精细设计的光滤波特性的纳米多孔阳极氧化铝分布布拉格反射器(NAA-DBR)。这些基于NAA的光子晶体(PC)结构的光子禁带(PSB)通过在逐步脉冲阳极氧化过程中应用的变迹策略进行精确调谐,目的是在深度上设计NAA-DBR的有效介质。我们系统地评估了不同制造参数的影响,如变迹函数(即线性正、线性负、对数正和对数负)、幅度差(从0.105到0.420 mA cm)、电流密度偏移(从0.140到0.560 mA cm)、阳极氧化时间(从1100到1700 s)和扩孔时间(从0到6分钟)对NAA-DBR的PSB质量和中心波长的影响。结果表明,这些PC结构的PSB特性可通过制造参数进行高度调谐,其中发现对数负变迹是在紫外-可见-近红外光谱范围内生产具有高质量PSB的NAA-DBR的最有效函数。我们的研究表明,变迹的NAA-DBR比未变迹的NAA-DBR对其有效介质的变化更敏感,使其成为开发先进光学传感系统更合适的传感平台。