School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia.
Institute for Photonics and Advanced Sensing (IPAS) , The University of Adelaide , Adelaide , South Australia 5005 , Australia.
ACS Appl Mater Interfaces. 2018 Jul 18;10(28):24124-24136. doi: 10.1021/acsami.8b05946. Epub 2018 Jul 5.
In this study, we explore for the first time the capabilities of nanoporous anodic alumina gradient-index filters (NAA-GIFs) functionalized with titanium dioxide (TiO) photoactive layers to enhance photon-to-electron conversion rates and improve the efficiency of photocatalytic reactions by "slow photon" effect. A set of NAA-GIFs was fabricated by sinusoidal pulse anodization, in which a systematic modification of various anodization parameters (i.e., pore widening time, anodization period, and anodization time) enables the fine-tuning of the photonic stopband (PSB) of these nanoporous photonic crystals (PCs) across the spectral regions. The surface of NAA-GIFs was chemically modified with photoactive layers of TiO to create a composite photoactive material with precisely engineered optical properties. The photocatalytic performance of TiO-functionalized NAA-GIFs was assessed by studying the photodegradation of three model organic dyes (i.e., methyl orange, Rhodamine B, and methylene blue) with well-defined absorption bands across different spectral regions under simulated irradiation conditions. Our study demonstrates that when the edges of characteristic PSB of TiO-modified NAA-GIFs are completely or partially aligned with the absorption band of the organic dyes, the photodegradation rate is enhanced due to "slow photon" effect. A rational design of the photocatalyst material with respect to the organic dye is demonstrated to be optimal to speed up photocatalytic reactions by an efficient management of photons from high-irradiance spectral regions. This provides new opportunities to develop high-performing photocatalytic materials for efficient photocatalysis with broad applicability.
在这项研究中,我们首次探索了功能化有二氧化钛(TiO)光活性层的纳米多孔阳极氧化铝梯度折射率滤光片(NAA-GIF)的能力,以通过“慢光子”效应提高光子到电子的转换率并提高光催化反应的效率。通过正弦脉冲阳极氧化法制备了一组 NAA-GIF,其中系统地改变各种阳极氧化参数(即孔扩宽时间、阳极氧化周期和阳极氧化时间)可实现这些纳米多孔光子晶体(PC)的光子带隙(PSB)在光谱区域内的微调。通过化学方法将 NAA-GIF 的表面改性为 TiO 的光活性层,从而制造出具有精确设计光学性能的复合光活性材料。通过研究在模拟照射条件下具有不同光谱区域的明确吸收带的三种模型有机染料(即甲基橙、罗丹明 B 和亚甲基蓝)的光降解作用,评估了 TiO 功能化的 NAA-GIF 的光催化性能。我们的研究表明,当 TiO 改性的 NAA-GIF 的特征 PSB 的边缘完全或部分与有机染料的吸收带对齐时,由于“慢光子”效应,光降解率得到提高。针对有机染料对光催化剂材料进行合理设计被证明是最佳的,通过高效管理高光强光谱区域的光子,可加快光催化反应。这为开发具有广泛适用性的高效光催化材料提供了新的机会。