Inria, Sorbonne Université, Université Paris-Diderot SPC, CNRS Laboratoire Jacques-Louis Lions, équipe MAMBA, Paris, France.
Inria, Université de Strasbourg, ICUBE, équipe MIMESIS, Strasbourg, France.
J Theor Biol. 2021 Feb 21;511:110557. doi: 10.1016/j.jtbi.2020.110557. Epub 2020 Dec 8.
Given maximal social distancing duration and intensity, how can one minimize the epidemic final size, or equivalently the total number of individuals infected during the outbreak? A complete answer to this question is provided and demonstrated here for the SIR epidemic model. In this simplified setting, the optimal solution consists in enforcing the highest confinement level during the longest allowed period, beginning at a time instant that is the unique solution to certain 1D optimization problem. Based on this result, we present numerical essays showing the best possible performance for a large set of basic reproduction numbers and lockdown durations and intensities.
在最大社交距离持续时间和强度的情况下,如何将疫情的最终规模(即疫情爆发期间感染的总人数)最小化?本文针对 SIR 传染病模型,完整地回答了这个问题。在这个简化的设置中,最优解是在最长允许时间段内实施最高的隔离级别,从特定一维优化问题的唯一解开始。基于这一结果,我们给出了数值研究,展示了在大量基本繁殖数和封锁持续时间和强度下的最佳性能。