IEEE Trans Biomed Eng. 2019 Mar;66(3):695-709. doi: 10.1109/TBME.2018.2854676. Epub 2018 Jul 9.
In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a better understanding of the human brain compared to static network analysis.
In this paper, a new tensor based temporal and multi-layer community detection algorithm is introduced to identify and track the brain network community structure across time and subjects. The framework studies the temporal evolution of communities in fMRI connectivity networks constructed across different regions of interests. The proposed approach relies on determining the subspace that best describes the community structure using Tucker decomposition of the tensor.
The brain dynamics are summarized into a set of functional connectivity states that are repeated over time and subjects. The dynamic behavior of the brain is evaluated in terms of consistency of different subnetworks during resting state. The results illustrate that some of the networks, such as the default mode, cognitive control and bilateral limbic networks, have low consistency over time indicating their dynamic behavior.
The results indicate that the functional connectivity of the brain is dynamic and the detected community structure experiences smooth temporal evolution.
The work in this paper provides evidence for temporal brain dynamics during resting state through dynamic multi-layer community detection which enables us to better understand the behavior of different subnetworks.
近年来,静息态 fMRI 已被广泛用于研究健康和疾病人群大脑的功能组织。最近的研究表明,静息态时的功能连接是一个动态过程。与静态网络分析相比,研究这种时间动态性可以更好地理解人类大脑。
在本文中,我们引入了一种基于张量的时间和多层社区检测算法,以识别和跟踪随时间和受试者变化的大脑网络社区结构。该框架研究了在不同感兴趣区域构建的 fMRI 连接网络中社区的时间演化。所提出的方法依赖于使用张量的 Tucker 分解来确定最佳描述社区结构的子空间。
大脑动力学被总结为一组随时间和受试者重复出现的功能连接状态。通过评估静息状态下不同子网的一致性来评估大脑的动态行为。结果表明,一些网络(如默认模式、认知控制和双侧边缘网络)的一致性随时间降低,表明其具有动态行为。
结果表明,大脑的功能连接是动态的,检测到的社区结构经历平滑的时间演化。
本文通过动态多层社区检测为静息态下的时间大脑动力学提供了证据,使我们能够更好地理解不同子网的行为。