Suppr超能文献

从非概率样本估计比例时的不可忽略选择偏倚指标。

Indices of non-ignorable selection bias for proportions estimated from non-probability samples.

作者信息

Andridge Rebecca R, West Brady T, Little Roderick J A, Boonstra Philip S, Alvarado-Leiton Fernanda

机构信息

Ohio State University, Columbus, USA.

University of Michigan, Ann Arbor, USA.

出版信息

J R Stat Soc Ser C Appl Stat. 2019 Nov;68(5):1465-1483. doi: 10.1111/rssc.12371. Epub 2019 Aug 2.

Abstract

Rising costs of survey data collection and declining response rates have caused researchers to turn to non-probability samples to make descriptive statements about populations. However, unlike probability samples, non-probability samples may produce severely biased descriptive estimates due to selection bias. The paper develops and evaluates a simple model-based index of the potential selection bias in estimates of population proportions due to non-ignorable selection mechanisms. The index depends on an inestimable parameter ranging from 0 to 1 that captures the amount of deviation from selection at random and is thus well suited to a sensitivity analysis. We describe modified maximum likelihood and Bayesian estimation approaches and provide new and easy-to-use R functions for their implementation. We use simulation studies to evaluate the ability of the proposed index to reflect selection bias in non-probability samples and show how the index outperforms a previously proposed index that relies on an underlying normality assumption. We demonstrate the use of the index in practice with real data from the National Survey of Family Growth.

摘要

调查数据收集成本的不断上升和回复率的下降,促使研究人员转向非概率样本,以便对总体做出描述性陈述。然而,与概率样本不同,由于选择偏差,非概率样本可能会产生严重有偏的描述性估计。本文开发并评估了一个基于简单模型的指数,用于衡量由于不可忽略的选择机制导致的总体比例估计中的潜在选择偏差。该指数依赖于一个取值范围从0到1的不可估计参数,该参数捕捉了与随机选择的偏离程度,因此非常适合进行敏感性分析。我们描述了修正的最大似然估计和贝叶斯估计方法,并提供了新的、易于使用的R函数来实现这些方法。我们通过模拟研究来评估所提出的指数反映非概率样本中选择偏差的能力,并展示该指数如何优于先前提出的依赖于潜在正态性假设的指数。我们使用来自全国家庭成长调查的真实数据,在实际应用中展示了该指数的使用。

相似文献

1
Indices of non-ignorable selection bias for proportions estimated from non-probability samples.
J R Stat Soc Ser C Appl Stat. 2019 Nov;68(5):1465-1483. doi: 10.1111/rssc.12371. Epub 2019 Aug 2.
2
Measures of the Degree of Departure from Ignorable Sample Selection.
J Surv Stat Methodol. 2020 Nov;8(5):932-964. doi: 10.1093/jssam/smz023. Epub 2019 Aug 29.
3
Occupancy modeling species-environment relationships with non-ignorable survey designs.
Ecol Appl. 2018 Sep;28(6):1616-1625. doi: 10.1002/eap.1754. Epub 2018 Jul 19.
4
Empirical likelihood method for non-ignorable missing data problems.
Lifetime Data Anal. 2017 Jan;23(1):113-135. doi: 10.1007/s10985-016-9381-0. Epub 2016 Sep 19.
5
A simulation study of diagnostics for selection bias.
J Off Stat. 2021 Sep;37(3):751-769. doi: 10.2478/jos-2021-0033. Epub 2021 Sep 12.
6
Non-ignorable missingness in logistic regression.
Stat Med. 2017 Aug 30;36(19):3005-3021. doi: 10.1002/sim.7349. Epub 2017 Jun 2.
7
Evaluating Pre-election Polling Estimates Using a New Measure of Non-ignorable Selection Bias.
Public Opin Q. 2023 Jun 8;87(Suppl 1):575-601. doi: 10.1093/poq/nfad018. eCollection 2023.
8
Bayesian second-order sensitivity of longitudinal inferences to non-ignorability: an application to antidepressant clinical trial data.
Int J Biostat. 2023 Nov 27;20(2):599-629. doi: 10.1515/ijb-2022-0014. eCollection 2024 Nov 1.
9
Sensitivity analysis for calibrated inverse probability-of-censoring weighted estimators under non-ignorable dropout.
Stat Methods Med Res. 2022 Jul;31(7):1374-1391. doi: 10.1177/09622802221090763. Epub 2022 Apr 12.

引用本文的文献

1
Analyzing Potential Non-Ignorable Selection Bias in an Off-Wave Mail Survey Implemented in a Long-Standing Panel Study.
J Surv Stat Methodol. 2024 Oct 23;13(1):100-127. doi: 10.1093/jssam/smae039. eCollection 2025 Feb.
2
The unmet need for mental health support among persons with disabilities in Somalia: Principal correlates and barriers to access.
Glob Ment Health (Camb). 2024 May 24;11:e73. doi: 10.1017/gmh.2024.66. eCollection 2024.
4
Evaluating Pre-election Polling Estimates Using a New Measure of Non-ignorable Selection Bias.
Public Opin Q. 2023 Jun 8;87(Suppl 1):575-601. doi: 10.1093/poq/nfad018. eCollection 2023.
6
Social Capital Changes After COVID-19 Lockdown Among Youths in China: COVID-19 Impact on Lifestyle Change Survey (COINLICS).
Front Public Health. 2021 Aug 16;9:697068. doi: 10.3389/fpubh.2021.697068. eCollection 2021.
7
Generalizing randomized trial findings to a target population using complex survey population data.
Stat Med. 2021 Feb 28;40(5):1101-1120. doi: 10.1002/sim.8822. Epub 2020 Nov 26.

本文引用的文献

1
Measures of the Degree of Departure from Ignorable Sample Selection.
J Surv Stat Methodol. 2020 Nov;8(5):932-964. doi: 10.1093/jssam/smz023. Epub 2019 Aug 29.
2
Using Twitter for Demographic and Social Science Research: Tools for Data Collection and Processing.
Sociol Methods Res. 2017 Aug;46(3):390-421. doi: 10.1177/0049124115605339. Epub 2015 Oct 9.
3
Use of Twitter to monitor attitudes toward depression and schizophrenia: an exploratory study.
PeerJ. 2014 Oct 28;2:e647. doi: 10.7717/peerj.647. eCollection 2014.
7
Using twitter to examine smoking behavior and perceptions of emerging tobacco products.
J Med Internet Res. 2013 Aug 29;15(8):e174. doi: 10.2196/jmir.2534.
10
Advantages and limitations of web-based surveys: evidence from a child mental health survey.
Soc Psychiatry Psychiatr Epidemiol. 2011 Jan;46(1):69-76. doi: 10.1007/s00127-009-0171-9. Epub 2009 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验