Suppr超能文献

一种用于揭示乳腺癌免疫逃逸调控机制的多源数据融合框架。

A Multi-Source Data Fusion Framework for Revealing the Regulatory Mechanism of Breast Cancer Immune Evasion.

作者信息

Chen Xia, Lin Yexiong, Qu Qiang, Ning Bin, Chen Haowen, Cai Lijun

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.

School of Basic Education, Changsha Aeronautical Vocational and Technical College, Changsha, China.

出版信息

Front Genet. 2020 Nov 12;11:595324. doi: 10.3389/fgene.2020.595324. eCollection 2020.

Abstract

For precision medicine, there is an enormous need to understand the immune evasion mechanism of tumor development, especially when tumor heterogeneity significantly affects the effect of immunotherapy. Recognizing the subtypes of breast cancer based on the immune-related genes helps to understand the immune escape pathways dominated by different subtypes, so as to implement effective treatment measures for different subtypes. For that, we used non-negative matrix factorization and consistent clustering algorithm on The Cancer Genome Atlas RNA-seq breast cancer data and recognized 4 subtypes according to the curated immune-related genes. Then, we conducted differential expression analysis between each subtype of breast cancer and normal tissue of RNA-seq data from non-cancer individuals collected by the Genotype-Tissue Expression to find out subtype-related immune genes. After that, we carried out correlation analysis between copy number variants (CNV) and mRNA of immune genes and investigated the regulatory mechanism of the immune genes, which cannot be explained by CNV based on ATAC-seq data. The experimental results reveal that and are potential for immune evasion in all 4 subgroups. The expression variations of can be mainly explained by its CNV, while the expression variation of is more likely regulated by transcript factors.

摘要

对于精准医学而言,非常有必要了解肿瘤发生的免疫逃逸机制,尤其是当肿瘤异质性显著影响免疫治疗效果时。基于免疫相关基因识别乳腺癌亚型有助于了解不同亚型主导的免疫逃逸途径,从而针对不同亚型实施有效的治疗措施。为此,我们对癌症基因组图谱(The Cancer Genome Atlas)的RNA测序乳腺癌数据使用非负矩阵分解和一致性聚类算法,并根据精心挑选的免疫相关基因识别出4种亚型。然后,我们对基因型-组织表达(Genotype-Tissue Expression)收集的非癌症个体的RNA测序数据进行了乳腺癌各亚型与正常组织之间的差异表达分析,以找出亚型相关的免疫基因。之后,我们进行了免疫基因的拷贝数变异(CNV)与mRNA之间的相关性分析,并基于染色质转座酶可及性测序(ATAC-seq)数据研究了无法用CNV解释的免疫基因的调控机制。实验结果表明,[原文此处两个基因名称缺失]在所有4个亚组中均具有免疫逃逸的潜力。[原文此处两个基因名称缺失]的表达变化主要可由其CNV解释,而[原文此处一个基因名称缺失]的表达变化更可能受转录因子调控。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4348/7693564/277d3c0a2837/fgene-11-595324-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验