Suppr超能文献

开放纳米孔中的吸附动力学作为低频噪声源

Adsorption Kinetics in Open Nanopores as a Source of Low-Frequency Noise.

作者信息

Gravelle Simon, Netz Roland R, Bocquet Lydéric

机构信息

School of Engineering and Material Science , Queen Mary University of London , London E1 4NS , United Kingdom.

Department of Physics , Freie Universität Berlin , 14195 Berlin , Germany.

出版信息

Nano Lett. 2019 Oct 9;19(10):7265-7272. doi: 10.1021/acs.nanolett.9b02858. Epub 2019 Sep 11.

Abstract

Ionic current measurements through solid-state nanopores consistently show a power spectral density that scales as 1/  at low frequency , with an exponent α ∼ 0.5-1.5, but strikingly, the physical origin of this behavior remains elusive. Here, we perform simulations of particles reversibly adsorbing at the surface of a nanopore and show that the fluctuations in the number of adsorbed particles exhibit low-frequency pink noise. We furthermore propose theoretical modeling for the time-dependent adsorption of particles on the nanopore surface for various geometries, which predicts a frequency spectrum in very good agreement with the simulation results. Altogether, our results highlight that the low-frequency noise takes its origin in the reversible adsorption of ions at the pore surface combined with the long-lasting excursions of the ions in the reservoirs. The scaling regime of the power spectrum extends down to a cutoff frequency which is far smaller than simple diffusion estimates. Using realistic values for the pore dimensions and the adsorption-desorption kinetics, this predicts the observation of pink noise for frequencies down to the hertz for a typical solid-state nanopore, in good agreement with experiments.

摘要

通过固态纳米孔进行的离子电流测量始终显示出功率谱密度,在低频时按1 / 缩放,指数α约为0.5 - 1.5,但令人惊讶的是,这种行为的物理起源仍然难以捉摸。在这里,我们对纳米孔表面可逆吸附的粒子进行了模拟,结果表明吸附粒子数量的波动呈现出低频粉红噪声。此外,我们针对各种几何形状的纳米孔表面上粒子随时间的吸附提出了理论模型,该模型预测的频谱与模拟结果非常吻合。总的来说,我们的结果表明低频噪声源于离子在孔表面的可逆吸附以及离子在储液器中的长时间偏移。功率谱的缩放范围一直延伸到远低于简单扩散估计的截止频率。使用纳米孔尺寸和吸附 - 解吸动力学的实际值,这预测对于典型的固态纳米孔,在低至赫兹的频率下可观察到粉红噪声,与实验结果吻合良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验