Suppr超能文献

深度学习用于胃活检中幽门螺杆菌的灵敏检测。

Deep learning for sensitive detection of Helicobacter Pylori in gastric biopsies.

作者信息

Klein Sebastian, Gildenblat Jacob, Ihle Michaele Angelika, Merkelbach-Bruse Sabine, Noh Ka-Won, Peifer Martin, Quaas Alexander, Büttner Reinhard

机构信息

Else-Kröner-Forschungskolleg, Clonal Evolution in Cancer, University Hospital Cologne, Cologne, Germany.

Institute for Pathology, University Hospital Cologne, Cologne, Germany.

出版信息

BMC Gastroenterol. 2020 Dec 11;20(1):417. doi: 10.1186/s12876-020-01494-7.

Abstract

BACKGROUND

Helicobacter pylori, a 2 × 1 μm spiral-shaped bacterium, is the most common risk factor for gastric cancer worldwide. Clinically, patients presenting with symptoms of gastritis, routinely undergo gastric biopsies. The following histo-morphological evaluation dictates therapeutic decisions, where antibiotics are used for H. pylori eradication. There is a strong rational to accelerate the detection process of H. pylori on histological specimens, using novel technologies, such as deep learning.

METHODS

We designed a deep-learning-based decision support algorithm that can be applied on regular whole slide images of gastric biopsies. In detail, we can detect H. pylori both on Giemsa- and regular H&E stained whole slide images.

RESULTS

With the help of our decision support algorithm, we show an increased sensitivity in a subset of 87 cases that underwent additional PCR- and immunohistochemical testing to define a sensitive ground truth of HP presence. For Giemsa stained sections, the decision support algorithm achieved a sensitivity of 100% compared to 68.4% (microscopic diagnosis), with a tolerable specificity of 66.2% for the decision support algorithm compared to 92.6 (microscopic diagnosis).

CONCLUSION

Together, we provide the first evidence of a decision support algorithm proving as a sensitive screening option for H. pylori that can potentially aid pathologists to accurately diagnose H. pylori presence on gastric biopsies.

摘要

背景

幽门螺杆菌是一种2×1μm的螺旋形细菌,是全球胃癌最常见的危险因素。临床上,出现胃炎症状的患者通常会接受胃活检。接下来的组织形态学评估决定治疗方案,其中抗生素用于根除幽门螺杆菌。利用深度学习等新技术加速在组织学标本上检测幽门螺杆菌的过程具有很强的合理性。

方法

我们设计了一种基于深度学习的决策支持算法,可应用于胃活检的常规全切片图像。具体而言,我们可以在吉姆萨染色和常规苏木精-伊红染色的全切片图像上检测幽门螺杆菌。

结果

在我们的决策支持算法的帮助下,我们在87例接受了额外的聚合酶链反应和免疫组织化学检测以确定幽门螺杆菌存在的敏感金标准的病例子集中显示出敏感性增加。对于吉姆萨染色切片,决策支持算法的敏感性达到100%,而显微镜诊断为68.4%,决策支持算法的特异性为66.2%,尚可接受,而显微镜诊断为92.6%。

结论

我们共同提供了首个证据,证明一种决策支持算法可作为幽门螺杆菌的敏感筛查选项,可能有助于病理学家准确诊断胃活检中幽门螺杆菌的存在。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验