Aneiros-Fernández José, Montero Pavón Pedro, García Gómez Natalia, Palo Prian Rosa María, Sánchez García Ismael, Romero Ortiz Ana Isabel, López Castro Rodrigo, Casado-Sánchez César, Sánchez Turrión Víctor, Luna Antonio, Berbís Manuel Álvaro
Department of Pathology, University Hospital Complex of Granada, 18014 Granada, Spain.
Department of Anatomical Pathology, Hospital San Juan de la Cruz, 23400 Úbeda, Jaén, Spain.
Diagnostics (Basel). 2025 Apr 24;15(9):1085. doi: 10.3390/diagnostics15091085.
is a major risk factor for gastric cancer. The incidence and prevalence of the pathogen are increasing worldwide, urging novel approaches to reduce detection turnaround times. diagnosis relies on histological examination of gastric biopsies, but interobserver variability considerably impacts its identification. We present an algorithm combining a feature pyramid network and a ResNet architecture for automatic and rapid detection in digitized Warthin-Starry-stained gastric biopsies. : Whole-slide images were segmented into manually annotated smaller patches and segments containing stomach tissue were analyzed for the presence of Gram-negative bacteria. Patches classified as positive were examined to confirm the presence/absence of bacteria in contact with the gastric epithelial surface (). : The algorithm exhibited 0.923 average precision and 0.982 average recall. The conducted efficiency study demonstrated that algorithm utilization significantly decreased ( < 0.001) diagnostic turnaround times for all participants (two pathologists, a pathology resident, a pathology technician, and a biotechnologist), observing an 88.13-91.76% time reduction. Implementation of the algorithm also improved diagnostic accuracy for the resident, technician, and biotechnologist, indicating that the tool remarkably supports less experienced personnel. : We believe that the incorporation of our algorithm into pathology workflows will help standardize diagnostic protocols and drastically reduce diagnostic turnaround times.
是胃癌的一个主要风险因素。该病原体的发病率和流行率在全球范围内都在上升,这促使人们采用新的方法来缩短检测周转时间。诊断依赖于胃活检的组织学检查,但观察者之间的差异对其识别有很大影响。我们提出了一种结合特征金字塔网络和残差网络架构的算法,用于在数字化沃辛-斯塔里染色的胃活检样本中自动快速检测。:全切片图像被分割成手动标注的较小图像块,并分析包含胃组织的图像块中是否存在革兰氏阴性菌。对分类为阳性的图像块进行检查,以确认与胃上皮表面接触的细菌是否存在()。:该算法的平均精度为0.923,平均召回率为0.982。进行的效率研究表明,算法的使用显著降低了所有参与者(两名病理学家、一名病理住院医师、一名病理技术员和一名生物技术专家)的诊断周转时间(<0.001),时间减少了88.13-91.76%。该算法的实施还提高了住院医师、技术员和生物技术专家的诊断准确性,表明该工具对经验不足的人员有显著支持作用。:我们相信,将我们的算法纳入病理工作流程将有助于标准化诊断方案,并大幅减少诊断周转时间。