Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Philips GmbH Innovative Technologies, Aachen, Germany.
Sci Rep. 2020 Dec 11;10(1):21799. doi: 10.1038/s41598-020-78384-1.
In aneurysmal subarachnoid hemorrhage (aSAH), accurate diagnosis of aneurysm is essential for subsequent treatment to prevent rebleeding. However, aneurysm detection proves to be challenging and time-consuming. The purpose of this study was to develop and evaluate a deep learning model (DLM) to automatically detect and segment aneurysms in patients with aSAH on computed tomography angiography. In this retrospective single-center study, three different DLMs were trained on 68 patients with 79 aneurysms treated for aSAH (2016-2017) using five-fold-cross-validation. Their outputs were combined to a single DLM via ensemble-learning. The DLM was evaluated on an independent test set consisting of 185 patients with 215 aneurysms (2010-2015). Independent manual segmentations of aneurysms in a 3D voxel-wise manner by two readers (neurosurgeon, radiologist) provided the reference standard. For aneurysms > 30 mm (mean diameter of ~ 4 mm) on the test set, the DLM provided a detection sensitivity of 87% with false positives (FPs)/scan of 0.42. Automatic segmentations achieved a median dice similarity coefficient (DSC) of 0.80 compared to the reference standard. Aneurysm location (anterior vs. posterior circulation; P = .07) and bleeding severity (Fisher grade ≤ 3 vs. 4; P = .33) did not impede detection sensitivity or segmentation performance. For aneurysms > 100 mm (mean diameter of ~ 6 mm), a sensitivity of 96% with DSC of 0.87 and FPs/scan of 0.14 were obtained. In the present study, we demonstrate that the proposed DLM detects and segments aneurysms > 30 mm in patients with aSAH with high sensitivity independent of cerebral circulation and bleeding severity while producing FP findings of less than one per scan. Hence, the DLM can potentially assist treating physicians in aSAH by providing automated detection and segmentations of aneurysms.
在颅内动脉瘤性蛛网膜下腔出血(aSAH)中,准确诊断动脉瘤对于后续治疗以防止再出血至关重要。然而,动脉瘤的检测证明具有挑战性和耗时。本研究旨在开发和评估一种深度学习模型(DLM),以自动检测和分割 aSAH 患者 CT 血管造影中的动脉瘤。在这项回顾性单中心研究中,使用五折交叉验证,对 2016 年至 2017 年期间治疗的 68 例 79 个动脉瘤的患者使用三种不同的 DLM 进行训练。通过集成学习将它们的输出组合到一个单一的 DLM 中。该 DLM 在由 185 例患者 215 个动脉瘤组成的独立测试集(2010 年至 2015 年)上进行了评估。两位读者(神经外科医生、放射科医生)以三维体素的方式对动脉瘤进行独立的手动分割,为参考标准。对于测试集中直径大于 30mm(平均直径约为 4mm)的动脉瘤,DLM 的检测灵敏度为 87%,假阳性率(FP)/扫描为 0.42。自动分割与参考标准相比,中位数骰子相似系数(DSC)为 0.80。动脉瘤位置(前循环与后循环;P=0.07)和出血严重程度(Fisher 分级≤3 与 4;P=0.33)不影响检测灵敏度或分割性能。对于直径大于 100mm(平均直径约为 6mm)的动脉瘤,获得了 96%的灵敏度,DSC 为 0.87,FP/扫描为 0.14。在本研究中,我们证明,所提出的 DLM 可以在不受大脑循环和出血严重程度影响的情况下,检测和分割 aSAH 患者直径大于 30mm 的动脉瘤,其敏感性高,同时每扫描产生的 FP 发现少于一个。因此,该 DLM 可以通过自动检测和分割动脉瘤来帮助治疗医生治疗 aSAH。