Suppr超能文献

深度学习在 CT 血管造影图像颅内动脉瘤检测中的应用

Deep Learning for Detection of Intracranial Aneurysms from Computed Tomography Angiography Images.

机构信息

Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China.

Engineering Research Center of Wideband Wireless Communication Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Jiangsu, Nanjing, 210000, China.

出版信息

J Digit Imaging. 2023 Feb;36(1):114-123. doi: 10.1007/s10278-022-00698-5. Epub 2022 Sep 9.

Abstract

The accuracy of computed tomography angiography (CTA) image interpretation depends on the radiologist. This study aims to develop a new method for automatically detecting intracranial aneurysms from CTA images using deep learning, based on a convolutional neural network (CNN) implemented on the DeepMedic platform. Ninety CTA scans of patients with intracranial aneurysms are collected and divided into two datasets: training (80 subjects) and test (10 subjects) datasets. Subsequently, a deep learning architecture with a three-dimensional (3D) CNN model is implemented on the DeepMedic platform for the automatic segmentation and detection of intracranial aneurysms from the CTA images. The samples in the training dataset are used to train the CNN model, and those in the test dataset are used to assess the performance of the established system. Sensitivity, positive predictive value (PPV), and false positives are evaluated. The overall sensitivity and PPV of this system for detecting intracranial aneurysms from CTA images are 92.3% and 100%, respectively, and the segmentation sensitivity is 92.3%. The performance of the system in the detection of intracranial aneurysms is closely related to their size. The detection sensitivity for small intracranial aneurysms (≤ 3 mm) is 66.7%, whereas the sensitivity of detection for large (> 10 mm) and medium-sized (3-10 mm) intracranial aneurysms is 100%. The deep learning architecture with a 3D CNN model on the DeepMedic platform can reliably segment and detect intracranial aneurysms from CTA images with high sensitivity.

摘要

计算机断层血管造影(CTA)图像解读的准确性取决于放射科医生。本研究旨在开发一种新的方法,基于 DeepMedic 平台上的卷积神经网络(CNN),使用深度学习自动从 CTA 图像中检测颅内动脉瘤。收集了 90 例颅内动脉瘤患者的 CTA 扫描图像,并将其分为两个数据集:训练集(80 例)和测试集(10 例)。随后,在 DeepMedic 平台上实现了一个具有三维(3D)CNN 模型的深度学习架构,用于自动从 CTA 图像中分割和检测颅内动脉瘤。训练数据集中的样本用于训练 CNN 模型,测试数据集中的样本用于评估所建立系统的性能。评估了敏感性、阳性预测值(PPV)和假阳性。该系统从 CTA 图像中检测颅内动脉瘤的总体敏感性和 PPV 分别为 92.3%和 100%,分割敏感性为 92.3%。该系统在颅内动脉瘤检测中的性能与动脉瘤的大小密切相关。对于小颅内动脉瘤(≤3mm)的检测敏感性为 66.7%,而对于大(>10mm)和中等大小(3-10mm)颅内动脉瘤的检测敏感性为 100%。DeepMedic 平台上的 3D CNN 模型深度学习架构可以可靠地从 CTA 图像中分割和检测颅内动脉瘤,具有较高的敏感性。

相似文献

5
Deep learning for automated cerebral aneurysm detection on computed tomography images.深度学习在计算机断层扫描图像上自动检测脑动脉瘤。
Int J Comput Assist Radiol Surg. 2020 Apr;15(4):715-723. doi: 10.1007/s11548-020-02121-2. Epub 2020 Feb 13.

引用本文的文献

3
Vessel-aware aneurysm detection using multi-scale deformable 3D attention.使用多尺度可变形3D注意力机制的血管感知动脉瘤检测
Med Image Comput Comput Assist Interv. 2024 Oct;15005:754-765. doi: 10.1007/978-3-031-72086-4_71. Epub 2024 Oct 4.

本文引用的文献

3
Deep learning for automated cerebral aneurysm detection on computed tomography images.深度学习在计算机断层扫描图像上自动检测脑动脉瘤。
Int J Comput Assist Radiol Surg. 2020 Apr;15(4):715-723. doi: 10.1007/s11548-020-02121-2. Epub 2020 Feb 13.
8
Deep Learning-Based Detection of Intracranial Aneurysms in 3D TOF-MRA.基于深度学习的 3D TOF-MRA 颅内动脉瘤检测。
AJNR Am J Neuroradiol. 2019 Jan;40(1):25-32. doi: 10.3174/ajnr.A5911. Epub 2018 Dec 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验