Center for Neuromorphic Engineering, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
Nanoscale. 2020 Dec 23;12(48):24503-24509. doi: 10.1039/d0nr07403a.
Neuromorphic computing is of great interest among researchers interested in overcoming the von Neumann computing bottleneck. A synaptic device, one of the key components to realize a neuromorphic system, has a weight that indicates the strength of the connection between two neurons, and updating this weight must have linear and symmetric characteristics. Especially, a transistor-type device has a gate terminal, separating the processes of reading and updating the conductivity, used as a synaptic weight to prevent sneak path current issues during synaptic operations. In this study, we fabricate a top-gated flash memory device based on two-dimensional (2D) materials, MoS2 and graphene, as a channel and a floating gate, respectively, and Al2O3 and HfO2 to increase the tunneling efficiency. We demonstrate the linear weight updates and repeatable characteristics of applying negative/positive pulses, and also emulate spike timing-dependent plasticity (STDP), one of the learning rules in a spiking neural network (SNN).
神经形态计算在致力于克服冯·诺依曼计算瓶颈的研究人员中引起了极大的兴趣。突触器件是实现神经形态系统的关键组件之一,其权重表示两个神经元之间连接的强度,并且必须具有线性和对称的特性来更新这个权重。特别是,晶体管类型的器件具有栅极端子,将读取和更新电导率的过程分开,用作突触权重,以防止在突触操作期间出现旁路电流问题。在这项研究中,我们基于二维 (2D) 材料 MoS2 和石墨烯分别制造了顶栅闪存器件作为沟道和浮栅,并使用 Al2O3 和 HfO2 来提高隧穿效率。我们展示了施加负/正脉冲时的线性权重更新和可重复特性,并且还模拟了尖峰时间依赖可塑性 (STDP),这是脉冲神经网络 (SNN) 中的一种学习规则。