Suppr超能文献

可变剪接调控 Yorkie 活性对于发育稳定性是必需的。

Modulation of Yorkie activity by alternative splicing is required for developmental stability.

机构信息

Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.

出版信息

EMBO J. 2021 Feb 1;40(3):e104895. doi: 10.15252/embj.2020104895. Epub 2020 Dec 15.

Abstract

The Hippo signaling pathway is a major regulator of organ growth, which controls the activity of the transcription coactivator Yorkie (Yki) in Drosophila and its homolog YAP in mammals. Both Yki and YAP proteins exist as alternatively spliced isoforms containing either one or two WW domains. The biological importance of this conserved alternative splicing event is unknown. Here, we identify the splicing factor B52 as a regulator of yki alternative splicing in Drosophila and show that B52 modulates growth in part through modulation of yki alternative splicing. Yki isoforms differ by their transcriptional activity as well as their ability to bind and bridge PPxY motifs-containing partners, and can compete in vivo. Strikingly, flies in which yki alternative splicing has been abrogated, thus expressing only Yki2 isoform, exhibit fluctuating wing asymmetry, a signal of developmental instability. Our results identify yki alternative splicing as a new level of modulation of the Hippo pathway, that is required for growth equilibration during development. This study provides the first demonstration that the process of alternative splicing contributes to developmental robustness.

摘要

Hippo 信号通路是器官生长的主要调节剂,它控制果蝇中转录共激活因子 Yorkie (Yki) 和哺乳动物同源物 YAP 的活性。Yki 和 YAP 蛋白都存在具有一个或两个 WW 结构域的选择性剪接异构体。这种保守的选择性剪接事件的生物学重要性尚不清楚。在这里,我们确定剪接因子 B52 是果蝇中 yki 选择性剪接的调节因子,并表明 B52 通过调节 yki 选择性剪接在一定程度上调节生长。Yki 异构体在转录活性以及与含有 PPxY 基序的伴侣结合和桥接的能力上存在差异,并且可以在体内竞争。引人注目的是,yki 选择性剪接被消除的果蝇,即只表达 Yki2 异构体,表现出翅膀不对称性的波动,这是发育不稳定性的信号。我们的研究结果确定 yki 选择性剪接是 Hippo 通路的一种新的调节方式,是发育过程中生长平衡所必需的。本研究首次证明了选择性剪接过程有助于发育稳健性。

相似文献

1
Modulation of Yorkie activity by alternative splicing is required for developmental stability.
EMBO J. 2021 Feb 1;40(3):e104895. doi: 10.15252/embj.2020104895. Epub 2020 Dec 15.
2
Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie.
PLoS Biol. 2015 Oct 16;13(10):e1002274. doi: 10.1371/journal.pbio.1002274. eCollection 2015 Oct.
3
The Hippo pathway integrates PI3K-Akt signals with mechanical and polarity cues to control tissue growth.
PLoS Biol. 2019 Oct 15;17(10):e3000509. doi: 10.1371/journal.pbio.3000509. eCollection 2019 Oct.
4
Modulation of the Hippo pathway and organ growth by RNA processing proteins.
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10684-10689. doi: 10.1073/pnas.1807325115. Epub 2018 Sep 26.
6
Mechanical strain regulates the Hippo pathway in .
Development. 2018 Mar 8;145(5):dev159467. doi: 10.1242/dev.159467.
7
Silence of yki by miR-7 regulates the Hippo pathway.
Biochem Biophys Res Commun. 2020 Nov 12;532(3):446-452. doi: 10.1016/j.bbrc.2020.08.069. Epub 2020 Sep 2.
8
Ca-calpains axis regulates Yki stability and activity in Drosophila.
J Genet Genomics. 2024 Oct;51(10):1020-1029. doi: 10.1016/j.jgg.2024.04.011. Epub 2024 Apr 24.
9
In vivo analysis of Yorkie phosphorylation sites.
Oncogene. 2009 Apr 30;28(17):1916-27. doi: 10.1038/onc.2009.43. Epub 2009 Mar 30.
10
Brahma regulates the Hippo pathway activity through forming complex with Yki-Sd and regulating the transcription of Crumbs.
Cell Signal. 2015 Mar;27(3):606-13. doi: 10.1016/j.cellsig.2014.12.002. Epub 2014 Dec 8.

引用本文的文献

2
Regulatory roles of RNA binding proteins in the Hippo pathway.
Cell Death Discov. 2025 Jan 31;11(1):36. doi: 10.1038/s41420-025-02316-z.
3
The identification of protein and RNA interactors of the splicing factor Caper in the adult nervous system.
Front Mol Neurosci. 2023 Jun 23;16:1114857. doi: 10.3389/fnmol.2023.1114857. eCollection 2023.
5
7
The PIWI protein Aubergine recruits eIF3 to activate translation in the germ plasm.
Cell Res. 2020 May;30(5):421-435. doi: 10.1038/s41422-020-0294-9. Epub 2020 Mar 4.

本文引用的文献

1
The Hippo Signaling Pathway in Development and Disease.
Dev Cell. 2019 Aug 5;50(3):264-282. doi: 10.1016/j.devcel.2019.06.003.
2
The Hippo Signaling Network and Its Biological Functions.
Annu Rev Genet. 2018 Nov 23;52:65-87. doi: 10.1146/annurev-genet-120417-031621. Epub 2018 Sep 5.
3
Dynamic Fluctuations in Subcellular Localization of the Hippo Pathway Effector Yorkie In Vivo.
Curr Biol. 2018 May 21;28(10):1651-1660.e4. doi: 10.1016/j.cub.2018.04.018. Epub 2018 May 10.
4
Differential Binding Affinities and Allosteric Conformational Changes Underlie Interactions of Yorkie and a Multivalent PPxY Partner.
Biochemistry. 2018 Feb 6;57(5):547-556. doi: 10.1021/acs.biochem.7b00973. Epub 2018 Jan 5.
5
6
Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores.
Cell. 2017 Nov 30;171(6):1397-1410.e14. doi: 10.1016/j.cell.2017.10.008. Epub 2017 Oct 26.
7
Impact of Alternative Splicing on the Human Proteome.
Cell Rep. 2017 Aug 1;20(5):1229-1241. doi: 10.1016/j.celrep.2017.07.025.
8
Warts Signaling Controls Organ and Body Growth through Regulation of Ecdysone.
Curr Biol. 2017 Jun 5;27(11):1652-1659.e4. doi: 10.1016/j.cub.2017.04.048. Epub 2017 May 18.
9
Alternative splicing and the evolution of phenotypic novelty.
Philos Trans R Soc Lond B Biol Sci. 2017 Feb 5;372(1713). doi: 10.1098/rstb.2015.0474.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验