Gartside Jack C, Vanstone Alex, Dion Troy, Stenning Kilian D, Arroo Daan M, Kurebayashi Hidekazu, Branford Will R
Blackett Laboratory, Imperial College London, London, UK.
London Centre for Nanotechnology, University College London, London, UK.
Nat Commun. 2021 May 3;12(1):2488. doi: 10.1038/s41467-021-22723-x.
Strongly-interacting nanomagnetic arrays are finding increasing use as model host systems for reconfigurable magnonics. The strong inter-element coupling allows for stark spectral differences across a broad microstate space due to shifts in the dipolar field landscape. While these systems have yielded impressive initial results, developing rapid, scaleable means to access a broad range of spectrally-distinct microstates is an open research problem. We present a scheme whereby square artificial spin ice is modified by widening a 'staircase' subset of bars relative to the rest of the array, allowing preparation of any ordered vertex state via simple global-field protocols. Available microstates range from the system ground-state to high-energy 'monopole' states, with rich and distinct microstate-specific magnon spectra observed. Microstate-dependent mode-hybridisation and anticrossings are observed at both remanence and in-field with dynamic coupling strength tunable via microstate-selection. Experimental coupling strengths are found up to g/2π = 0.16 GHz. Microstate control allows fine mode-frequency shifting, gap creation and closing, and active mode number selection.
强相互作用纳米磁体阵列作为可重构磁振子学的模型宿主系统正得到越来越广泛的应用。由于偶极场分布的变化,强元素间耦合使得在宽广的微观态空间中存在明显的光谱差异。虽然这些系统已经取得了令人印象深刻的初步成果,但开发快速、可扩展的方法以获得广泛的光谱不同的微观态仍是一个开放的研究问题。我们提出了一种方案,通过相对于阵列的其余部分加宽“阶梯”子集的条形来修改方形人工自旋冰,从而允许通过简单的全局场协议制备任何有序顶点状态。可用的微观态范围从系统基态到高能“单极”态,并观察到丰富且独特的特定微观态磁振子光谱。在剩磁状态和磁场中均观察到了微观态依赖的模式杂交和反交叉现象,并且可以通过微观态选择来调节动态耦合强度。实验测得的耦合强度高达g/2π = 0.16 GHz。微观态控制允许精细的模式频率移动、能隙的产生和闭合以及有源模式数量的选择。