Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.
Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China.
Biomacromolecules. 2021 Feb 8;22(2):540-545. doi: 10.1021/acs.biomac.0c01402. Epub 2020 Dec 15.
Herein, an efficient strategy to fabricate well-organized one-dimensional (1D) inorganic nanostructures is demonstrated by utilizing the hollow tobacco mosaic virus coat protein (TMVCP) as a restrictive template. Considering the advantages of the unique hollow structure and the dynamic self-assembly attribute of TMVCP, foreign nano-objects are successfully encapsulated and conveniently assembled into highly organized 1D chainlike structures in the cavity of the TMVCP multimer (TMV disk). Different kinds of functional nanoparticles, such as gold nanoparticles (AuNPs) and silver sulfide quantum dots (AgS QDs), are used to demonstrate the successful construction of ordered 1D nanochains in high yields. Notably, binary nanochains of such different kinds of nanoparticles are also constructed through co-assembling the TMV disk-coated AuNPs and AgS QDs. Further, the TMV-assisted AuNP nanochains are grown into the 1D nanowires through Au deposition owing to the spatial confinement of the TMVCP cavity. Together, our findings indicate that the TMV-assisted self-assembly approach, resulting in higher yields and better controllability over the other reported studies based on directly mineralizing the metal architectures in the TMV nanorods, provides enormous potential toward the fabrication of highly complex hybrid-metal nanostructures.
本文展示了一种高效的策略,通过利用中空烟草花叶病毒衣壳蛋白(TMVCP)作为限制模板来制造组织良好的一维(1D)无机纳米结构。考虑到 TMVCP 独特的中空结构和动态自组装特性的优势,成功地将外来纳米物体封装并方便地组装成高度有序的 1D 链式结构,这些结构位于 TMVCP 多聚体(TMV 盘)的腔中。不同种类的功能性纳米粒子,如金纳米粒子(AuNPs)和银硫化量子点(AgS QDs),被用于证明有序 1D 纳米链的成功构建,产量很高。值得注意的是,通过共组装 TMV 盘包覆的 AuNPs 和 AgS QDs,还构建了这种不同种类纳米粒子的二元纳米链。此外,由于 TMVCP 腔的空间限制,通过 Au 沉积,TMV 辅助的 AuNP 纳米链进一步生长成 1D 纳米线。总之,我们的研究结果表明,与其他基于直接在 TMV 纳米棒中矿化金属结构的报道研究相比,TMV 辅助的自组装方法具有更高的产率和更好的可控性,为制造高度复杂的混合金属纳米结构提供了巨大的潜力。