Zhou Guoqing, Lu Gang, Prezhdo Oleg V
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.
Department of Physics and Astronomy, California State University, Northridge, California 91330, United States.
Nano Lett. 2021 Jan 13;21(1):756-761. doi: 10.1021/acs.nanolett.0c04442. Epub 2020 Dec 15.
Auger-type energy exchange plays key roles in the carrier dynamics in nanomaterials due to strong carrier-carrier interactions. However, theoretical descriptions are limited to perturbative calculations of scattering rates on static structures. We develop an accurate and efficient ab initio technique to model Auger scattering with nonadiabatic molecular dynamics. We incorporate the many-body Coulomb matrix into several surface hopping methods and describe simultaneously charge-charge and charge-phonon scattering in the time-domain and in a nonperturbative, configuration-dependent manner. The approach is illustrated with a CdSe quantum dot. Auger scattering between electrons and holes breaks the phonon bottleneck to electron relaxation. The bottleneck is recovered when electrons and holes are decoupled. The simulations correctly reproduce all experimental processes and time scales, including Auger- and phonon-assisted cooling of hot electrons, intraband carrier relaxation, and carrier recombination. Providing detailed insights into the energy flow, the developed method allows studies of carrier dynamics in nanomaterials with strong carrier-carrier interactions.
由于强载流子-载流子相互作用,俄歇型能量交换在纳米材料的载流子动力学中起着关键作用。然而,理论描述仅限于对静态结构上散射率的微扰计算。我们开发了一种精确且高效的从头算技术,用于用非绝热分子动力学对俄歇散射进行建模。我们将多体库仑矩阵纳入几种表面跳跃方法,并以非微扰、依赖于构型的方式在时域中同时描述电荷-电荷和电荷-声子散射。用CdSe量子点对该方法进行了说明。电子与空穴之间的俄歇散射打破了声子对电子弛豫的瓶颈。当电子与空穴解耦时,瓶颈得以恢复。模拟正确地再现了所有实验过程和时间尺度,包括热电子的俄歇辅助和声子辅助冷却、带内载流子弛豫以及载流子复合。所开发的方法能够深入洞察能量流动,从而允许对具有强载流子-载流子相互作用的纳米材料中的载流子动力学进行研究。