Suppr超能文献

用于俄歇过程的节能表面跳跃

Energy-Conserving Surface Hopping for Auger Processes.

作者信息

Gumber Shriya, Prezhdo Oleg V

机构信息

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.

出版信息

J Chem Theory Comput. 2024 Jul 9;20(13):5408-5417. doi: 10.1021/acs.jctc.4c00562. Epub 2024 Jun 20.

Abstract

Auger-type processes are ubiquitous in nanoscale materials because quantum confinement enhances Coulomb interactions, and there exist large densities of states. Modeling Auger processes requires the modification of nonadiabatic (NA) molecular dynamics algorithms to include transitions caused by both NA and Coulomb couplings. The system is split into quantum and classical subsystems, e.g., electrons and vibrations, and as a result, energy conservation becomes nontrivial. In surface hopping, an electronic transition induced by NA coupling is accompanied by a classical velocity readjustment to ensure conservation of the total quantum-classical energy. A different treatment is needed for Auger transitions driven by Coulomb interactions. We develop a nonadiabatic molecular dynamics methodology that meticulously differentiates the energy redistribution accompanying hops induced by the NA coupling and the Coulomb interaction and correctly conserves the total energy at each transition. If the transition is driven by a Coulomb interaction, the hop energy is redistributed within the quantum electronic subsystem only. If the transition is NA, the energy is redistributed between the quantum and classical subsystems. Properly maintaining energy conservation for both types of transitions is crucial to generate a correct order of events, obtain accurate transition times, maintain a proper statistical distribution of state populations, and reach thermodynamic equilibrium. We test the method with biexciton annihilation and Auger-assisted hot electron relaxation in a CdSe quantum dot. The sequence of Auger and phonon-driven processes and the calculated time scales are in excellent agreement with the experimental results. The developed approach can be coupled with any surface-hopping method and provides a crucial practical advance to study charge-carrier dynamics in the nanoscale and condensed matter systems.

摘要

俄歇型过程在纳米材料中普遍存在,因为量子限制增强了库仑相互作用,且存在大量的态密度。对俄歇过程进行建模需要修改非绝热(NA)分子动力学算法,以纳入由NA和库仑耦合引起的跃迁。系统被划分为量子和经典子系统,例如电子和振动,因此,能量守恒变得复杂。在表面跳跃中,由NA耦合引起的电子跃迁伴随着经典速度的重新调整,以确保总量子 - 经典能量守恒。对于由库仑相互作用驱动的俄歇跃迁,需要不同的处理方法。我们开发了一种非绝热分子动力学方法,该方法仔细区分了由NA耦合和库仑相互作用引起的跳跃所伴随的能量重新分布,并在每次跃迁时正确地守恒总能量。如果跃迁是由库仑相互作用驱动的,跳跃能量仅在量子电子子系统内重新分布。如果跃迁是非绝热的,能量则在量子和经典子系统之间重新分布。正确地为这两种跃迁维持能量守恒对于生成正确的事件顺序、获得准确的跃迁时间、维持态布居数的适当统计分布以及达到热力学平衡至关重要。我们用CdSe量子点中的双激子湮灭和俄歇辅助热电子弛豫来测试该方法。俄歇和声子驱动过程的序列以及计算出的时间尺度与实验结果非常吻合。所开发的方法可以与任何表面跳跃方法相结合,并为研究纳米尺度和凝聚态物质系统中的电荷载流子动力学提供了关键的实际进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验