Suppr超能文献

通过计算神经科学方法在痴呆症护理路径中塑造数据驱动的时代。

Shaping a data-driven era in dementia care pathway through computational neurology approaches.

机构信息

Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Londonderry, Northern Ireland, UK.

Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Magee Campus, Londonderry, Northern Ireland, UK.

出版信息

BMC Med. 2020 Dec 16;18(1):398. doi: 10.1186/s12916-020-01841-1.

Abstract

BACKGROUND

Dementia is caused by a variety of neurodegenerative diseases and is associated with a decline in memory and other cognitive abilities, while inflicting an enormous socioeconomic burden. The complexity of dementia and its associated comorbidities presents immense challenges for dementia research and care, particularly in clinical decision-making.

MAIN BODY

Despite the lack of disease-modifying therapies, there is an increasing and urgent need to make timely and accurate clinical decisions in dementia diagnosis and prognosis to allow appropriate care and treatment. However, the dementia care pathway is currently suboptimal. We propose that through computational approaches, understanding of dementia aetiology could be improved, and dementia assessments could be more standardised, objective and efficient. In particular, we suggest that these will involve appropriate data infrastructure, the use of data-driven computational neurology approaches and the development of practical clinical decision support systems. We also discuss the technical, structural, economic, political and policy-making challenges that accompany such implementations.

CONCLUSION

The data-driven era for dementia research has arrived with the potential to transform the healthcare system, creating a more efficient, transparent and personalised service for dementia.

摘要

背景

痴呆症是由多种神经退行性疾病引起的,与记忆力和其他认知能力下降有关,同时给社会经济带来巨大负担。痴呆症的复杂性及其相关合并症给痴呆症研究和护理带来了巨大挑战,尤其是在临床决策方面。

主要内容

尽管目前尚无疾病修正疗法,但痴呆症的诊断和预后需要及时、准确的临床决策,以提供适当的护理和治疗,因此对其的需求日益增加且刻不容缓。然而,目前的痴呆症护理途径并不理想。我们提出,通过计算方法,可以更好地了解痴呆症的病因,并使痴呆症评估更加标准化、客观和高效。具体来说,我们建议这将涉及适当的数据基础设施、使用数据驱动的计算神经科学方法以及开发实用的临床决策支持系统。我们还讨论了这些实施所伴随的技术、结构、经济、政治和决策制定方面的挑战。

结论

数据驱动的痴呆症研究时代已经到来,有可能改变医疗保健系统,为痴呆症患者提供更高效、透明和个性化的服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e1/7739458/f044eed280c7/12916_2020_1841_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验