Suppr超能文献

深度学习与器官芯片在高通量药物筛选中的协同作用:综述

The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review.

机构信息

College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China.

Computing and Intelligence Department, Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.

出版信息

Biosensors (Basel). 2023 Mar 15;13(3):389. doi: 10.3390/bios13030389.

Abstract

Organs-on-chips (OoCs) are miniature microfluidic systems that have arguably become a class of advanced in vitro models. Deep learning, as an emerging topic in machine learning, has the ability to extract a hidden statistical relationship from the input data. Recently, these two areas have become integrated to achieve synergy for accelerating drug screening. This review provides a brief description of the basic concepts of deep learning used in OoCs and exemplifies the successful use cases for different types of OoCs. These microfluidic chips are of potential to be assembled as highly potent human-on-chips with complex physiological or pathological functions. Finally, we discuss the future supply with perspectives and potential challenges in terms of combining OoCs and deep learning for image processing and automation designs.

摘要

器官芯片(Organs-on-chips,OoCs)是一种微型微流控系统,可以说是一种先进的体外模型。深度学习作为机器学习中的一个新兴主题,具有从输入数据中提取隐藏统计关系的能力。最近,这两个领域已经结合起来,以实现协同作用,加速药物筛选。本文简要介绍了深度学习在 OoCs 中的基本概念,并举例说明了不同类型 OoCs 的成功应用案例。这些微流控芯片具有组装成具有复杂生理或病理功能的高通量人体芯片的潜力。最后,我们讨论了未来在图像处理和自动化设计方面结合 OoCs 和深度学习的观点和潜在挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bde5/10046732/0c5012ce7c56/biosensors-13-00389-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验