Belopolski Ilya, Watanabe Ryota, Sato Yuki, Yoshimi Ryutaro, Kawamura Minoru, Nagahama Soma, Zhao Yilin, Shao Sen, Jin Yuanjun, Kato Yoshihiro, Okamura Yoshihiro, Zhang Xiao-Xiao, Fujishiro Yukako, Takahashi Youtarou, Hirschberger Max, Tsukazaki Atsushi, Takahashi Kei S, Chiu Ching-Kai, Chang Guoqing, Kawasaki Masashi, Nagaosa Naoto, Tokura Yoshinori
RIKEN Center for Emergent Matter Science (CEMS), Wakō, Japan.
Department of Applied Physics, University of Tokyo, Tokyo, Japan.
Nature. 2025 Jan;637(8048):1078-1083. doi: 10.1038/s41586-024-08330-y. Epub 2025 Jan 22.
Quantum materials governed by emergent topological fermions have become a cornerstone of physics. Dirac fermions in graphene form the basis for moiré quantum matter and Dirac fermions in magnetic topological insulators enabled the discovery of the quantum anomalous Hall (QAH) effect. By contrast, there are few materials whose electromagnetic response is dominated by emergent Weyl fermions. Nearly all known Weyl materials are overwhelmingly metallic and are largely governed by irrelevant, conventional electrons. Here we theoretically predict and experimentally observe a semimetallic Weyl ferromagnet in van der Waals (Cr,Bi)Te. In transport, we find a record bulk anomalous Hall angle of greater than 0.5 along with non-metallic conductivity, a regime that is strongly distinct from conventional ferromagnets. Together with symmetry analysis, our data suggest a semimetallic Fermi surface composed of two Weyl points, with a giant separation of more than 75% of the linear dimension of the bulk Brillouin zone, and no other electronic states. Using state-of-the-art crystal-synthesis techniques, we widely tune the electronic structure, allowing us to annihilate the Weyl state and visualize a unique topological phase diagram exhibiting broad Chern insulating, Weyl semimetallic and magnetic semiconducting regions. Our observation of a semimetallic Weyl ferromagnet offers an avenue towards new correlated states and nonlinear phenomena, as well as zero-magnetic-field Weyl spintronic and optical devices.
由涌现的拓扑费米子主导的量子材料已成为物理学的基石。石墨烯中的狄拉克费米子构成了莫尔量子物质的基础,而磁性拓扑绝缘体中的狄拉克费米子促成了量子反常霍尔(QAH)效应的发现。相比之下,几乎没有材料的电磁响应由涌现的外尔费米子主导。几乎所有已知的外尔材料都是压倒性的金属材料,并且在很大程度上由无关的传统电子主导。在这里,我们从理论上预测并通过实验观察到范德华(Cr,Bi)Te中的一种半金属外尔铁磁体。在输运方面,我们发现了创纪录的体反常霍尔角大于0.5以及非金属导电性,这一状态与传统铁磁体有很大不同。结合对称性分析,我们的数据表明存在一个由两个外尔点组成的半金属费米面,其间距巨大,超过了体布里渊区线性尺寸的75%,且没有其他电子态。使用最先进的晶体合成技术,我们广泛地调节电子结构,从而能够消除外尔态并可视化一个独特的拓扑相图,该相图展示了广阔的陈绝缘、外尔半金属和磁性半导体区域。我们对半金属外尔铁磁体的观察为通向新的关联态和非线性现象以及零磁场外尔自旋电子学和光学器件提供了一条途径。