Bos Inge, Terenzi Camilla, Sprakel Joris
Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
Macromolecules. 2020 Dec 8;53(23):10675-10685. doi: 10.1021/acs.macromol.0c01915. Epub 2020 Nov 23.
Chemical feedback between building block synthesis and their subsequent supramolecular self-assembly into nanostructures has profound effects on assembly pathways. Nature harnesses feedback in reaction-assembly networks in a variety of scenarios including virion formation and protein folding. Also in nanomaterial synthesis, reaction-assembly networks have emerged as a promising control strategy to regulate assembly processes. Yet, how chemical feedback affects the fundamental pathways of structure formation remains unclear. Here, we unravel the pathways of a templated reaction-assembly network that couples a covalent polymerization to an electrostatic coassembly process. We show how the supramolecular staging of building blocks at a macromolecular template can accelerate the polymerization reaction and prevent the formation of kinetically trapped structures inherent to the process in the absence of feedback. Finally, we establish a predictive kinetic reaction model that quantitatively describes the pathways underlying these reaction-assembly networks. Our results shed light on the fundamental mechanisms by which chemical feedback can steer self-assembly reactions and can be used to rationally design new nanostructures.
构建模块合成与其随后超分子自组装成纳米结构之间的化学反馈对组装途径具有深远影响。在包括病毒粒子形成和蛋白质折叠在内的各种情况下,自然界利用反应 - 组装网络中的反馈。同样在纳米材料合成中,反应 - 组装网络已成为调节组装过程的一种有前景的控制策略。然而,化学反馈如何影响结构形成的基本途径仍不清楚。在这里,我们揭示了一个模板化反应 - 组装网络的途径,该网络将共价聚合与静电共组装过程耦合。我们展示了在大分子模板上构建模块的超分子分级如何加速聚合反应,并防止在没有反馈的情况下该过程中固有动力学捕获结构的形成。最后,我们建立了一个预测性动力学反应模型,定量描述了这些反应 - 组装网络的基础途径。我们的结果揭示了化学反馈引导自组装反应的基本机制,并可用于合理设计新的纳米结构。