Suppr超能文献

RAKI 网络的分块切片训练和超参数调整用于同时进行多切片重建。

Split-slice training and hyperparameter tuning of RAKI networks for simultaneous multi-slice reconstruction.

机构信息

Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.

Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI, USA.

出版信息

Magn Reson Med. 2021 Jun;85(6):3272-3280. doi: 10.1002/mrm.28634. Epub 2020 Dec 16.

Abstract

PURPOSE

Simultaneous multi-slice acquisitions are essential for modern neuroimaging research, enabling high temporal resolution functional and high-resolution q-space sampling diffusion acquisitions. Recently, deep learning reconstruction techniques have been introduced for unaliasing these accelerated acquisitions, and robust artificial-neural-networks for k-space interpolation (RAKI) have shown promising capabilities. This study systematically examines the impacts of hyperparameter selections for RAKI networks, and introduces a novel technique for training data generation which is analogous to the split-slice formalism used in slice-GRAPPA.

METHODS

RAKI networks were developed with variable hyperparameters and with and without split-slice training data generation. Each network was trained and applied to five different datasets including acquisitions harmonized with Human Connectome Project lifespan protocol. Unaliasing performance was assessed through L1 errors computed between unaliased and calibration frequency-space data.

RESULTS

Split-slice training significantly improved network performance in nearly all hyperparameter configurations. Best unaliasing results were achieved with three layer RAKI networks using at least 64 convolutional filters with receptive fields of 7 voxels, 128 single-voxel filters in the penultimate RAKI layer, batch normalization, and no training dropout with the split-slice augmented training dataset. Networks trained without the split-slice technique showed symptoms of network over-fitting.

CONCLUSIONS

Split-slice training for simultaneous multi-slice RAKI networks positively impacts network performance. Hyperparameter tuning of such reconstruction networks can lead to further improvements in unaliasing performance.

摘要

目的

并行多片采集对于现代神经影像学研究至关重要,能够实现高时间分辨率功能和高分辨率 q 空间采样扩散采集。最近,深度学习重建技术已被引入用于解卷叠这些加速采集,并且稳健的人工神经网络用于 k 空间插值(RAKI)已经显示出有前途的能力。本研究系统地检查了 RAKI 网络的超参数选择的影响,并引入了一种类似于在切片-GRAPPA 中使用的分裂切片形式的训练数据生成的新技术。

方法

RAKI 网络具有可变的超参数,并具有和不具有分裂切片训练数据生成。每个网络都经过训练,并应用于包括与人类连接组计划寿命协议协调的采集在内的五个不同数据集。通过在未解卷叠和校准频域数据之间计算的 L1 误差来评估解卷叠性能。

结果

分裂切片训练在几乎所有超参数配置中都显著提高了网络性能。使用具有至少 64 个卷积滤波器和 7 个体素大小的感受野、前倒数第二层中的 128 个单体素滤波器、批量归一化和分裂切片增强训练数据集的无训练辍学的三层 RAKI 网络,可获得最佳的解卷叠结果。未使用分裂切片技术训练的网络表现出网络过度拟合的症状。

结论

同时多片 RAKI 网络的分裂切片训练对网络性能有积极影响。此类重建网络的超参数调整可以进一步提高解卷叠性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验