Suppr超能文献

使用特定主题卷积神经网络的加速同步多切片磁共振成像

Accelerated Simultaneous Multi-Slice MRI using Subject-Specific Convolutional Neural Networks.

作者信息

Zhang Chi, Moeller Steen, Weingärtner Sebastian, Uğurbil Kâmil, Akçakaya Mehmet

机构信息

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN.

Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN.

出版信息

Conf Rec Asilomar Conf Signals Syst Comput. 2018 Oct;2018:1636-1640. doi: 10.1109/ACSSC.2018.8645313. Epub 2019 Feb 21.

Abstract

Simultaneous multi-slice or multi-band (SMS/MB) imaging allows accelerated coverage in magnetic resonance imaging (MRI). Multiple slices are excited and acquired at the same time, and reconstructed using the redundancies in receiver coil arrays, similar to parallel imaging. SMS/MB reconstruction is currently performed with linear reconstruction techniques. Recently, a nonlinear reconstruction method for parallel imaging, Robust Artificial-neural-networks for k-space Interpolation (RAKI) was proposed and shown to improve upon linear methods. This method uses convolutional neural networks (CNN) trained solely on subject-specific calibration data. In this study, we sought to extend RAKI to SMS/MB imaging reconstruction. CNN training was performed on calibration data acquired prior to SMS/MB imaging, in a manner consistent with the existing linear methods. These CNNs were used to reconstruct a time series of functional MRI (fMRI) data. CNN network parameters were optimized using an extensive search of the parameter space. With these optimal parameters, RAKI substantially improves image quality compared to a commonly used linear reconstruction algorithm, especially for high acceleration rates.

摘要

同时多层或多频段(SMS/MB)成像可实现磁共振成像(MRI)中的加速覆盖。多个层面在同一时间被激发和采集,并利用接收线圈阵列中的冗余信息进行重建,这与并行成像类似。目前,SMS/MB重建是采用线性重建技术来完成的。最近,一种用于并行成像的非线性重建方法——用于k空间插值的稳健人工神经网络(RAKI)被提出,并被证明优于线性方法。该方法使用仅基于特定受试者校准数据训练的卷积神经网络(CNN)。在本研究中,我们试图将RAKI扩展到SMS/MB成像重建。CNN训练是根据在SMS/MB成像之前采集的校准数据进行的,其方式与现有的线性方法一致。这些CNN被用于重建功能磁共振成像(fMRI)数据的时间序列。通过对参数空间进行广泛搜索来优化CNN网络参数。利用这些最优参数,与常用的线性重建算法相比,RAKI可显著提高图像质量,尤其是在高加速率情况下。

相似文献

1
Accelerated Simultaneous Multi-Slice MRI using Subject-Specific Convolutional Neural Networks.使用特定主题卷积神经网络的加速同步多切片磁共振成像
Conf Rec Asilomar Conf Signals Syst Comput. 2018 Oct;2018:1636-1640. doi: 10.1109/ACSSC.2018.8645313. Epub 2019 Feb 21.
7
Optimization of hyperparameters for SMS reconstruction.SMS 重建超参数的优化。
Magn Reson Imaging. 2020 Nov;73:91-103. doi: 10.1016/j.mri.2020.08.006. Epub 2020 Aug 22.

本文引用的文献

1
ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING.通过深度学习加速磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517. doi: 10.1109/ISBI.2016.7493320. Epub 2016 Jun 16.
3
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.MoDL:基于模型的深度学习架构用于反问题。
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
9
A parallel MR imaging method using multilayer perceptron.基于多层感知机的并行磁共振成像方法。
Med Phys. 2017 Dec;44(12):6209-6224. doi: 10.1002/mp.12600. Epub 2017 Oct 23.
10
Simultaneous multislice (SMS) imaging techniques.同时多层(SMS)成像技术。
Magn Reson Med. 2016 Jan;75(1):63-81. doi: 10.1002/mrm.25897. Epub 2015 Aug 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验