Suppr超能文献

利用消费者产品购买数据评估化学共暴露的数据分析方法。

Data Mining Approaches for Assessing Chemical Coexposures Using Consumer Product Purchase Data.

机构信息

Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.

Office of Research and Development, U.S. Environmental Protection Agency, Denver, CO, USA.

出版信息

Risk Anal. 2021 Sep;41(9):1716-1735. doi: 10.1111/risa.13650. Epub 2020 Dec 16.

Abstract

The use of consumer products presents a potential for chemical exposures to humans. Toxicity testing and exposure models are routinely employed to estimate risks from their use; however, a key challenge is the sparseness of information concerning who uses products and which products are used contemporaneously. Our goal was to demonstrate a method to infer use patterns by way of purchase data. We examined purchase patterns for three types of personal care products (cosmetics, hair care, and skin care) and two household care products (household cleaners and laundry supplies) using data from 60,000 households collected over a one-year period in 2012. The market basket analysis methodology frequent itemset mining (FIM) was used to identify co-occurring sets of product purchases for all households and demographic groups based on income, education, race/ethnicity, and family composition. Our methodology captured robust co-occurrence patterns for personal and household products, globally and for different demographic groups. FIM identified cosmetic co-occurrence patterns captured in prior surveys of cosmetic use, as well as a trend of increased diversity of cosmetic purchases as children mature to teenage years. We propose that consumer product purchase data can be mined to inform person-oriented use patterns for high-throughput chemical screening applications, for aggregate and combined chemical risk evaluations.

摘要

消费品的使用可能会对人类造成化学暴露。毒性测试和暴露模型通常用于评估其使用的风险;然而,一个关键的挑战是关于谁使用产品以及同时使用哪些产品的信息稀缺。我们的目标是展示一种通过购买数据推断使用模式的方法。我们使用 2012 年一年期间从 60000 户家庭收集的数据,对三种个人护理产品(化妆品、头发护理和皮肤护理)和两种家用护理产品(家用清洁剂和洗衣用品)的购买模式进行了检查。市场篮分析方法频繁项集挖掘(FIM)用于根据收入、教育、种族/民族和家庭构成,为所有家庭和人口统计群体识别产品购买的同时出现的产品集。我们的方法捕获了个人和家庭产品的强大共现模式,适用于全球和不同的人口统计群体。FIM 确定了先前化妆品使用调查中捕获的化妆品共现模式,以及随着儿童成长为青少年,化妆品购买的多样性增加的趋势。我们提出,消费者产品购买数据可以被挖掘,以告知高通量化学筛选应用的面向个人的使用模式,以及用于综合和联合化学风险评估。

相似文献

6
Health risks of chemicals in consumer products: A review.消费品中化学物质的健康风险:综述。
Environ Int. 2019 Feb;123:580-587. doi: 10.1016/j.envint.2018.12.033. Epub 2019 Jan 7.
8
PACEMweb: a tool for aggregate consumer exposure assessment.PACEMweb:一种用于综合消费者暴露评估的工具。
J Expo Sci Environ Epidemiol. 2023 Nov;33(6):971-979. doi: 10.1038/s41370-022-00509-7. Epub 2022 Dec 15.
9
Volatile pollutants emitted from selected liquid household products.从选定的家用液体产品中排放的挥发性污染物。
Environ Sci Pollut Res Int. 2008 Sep;15(6):521-6. doi: 10.1007/s11356-008-0028-x. Epub 2008 Aug 8.

本文引用的文献

3
Suspect Screening Analysis of Chemicals in Consumer Products.消费品中化学物质的可疑筛选分析。
Environ Sci Technol. 2018 Mar 6;52(5):3125-3135. doi: 10.1021/acs.est.7b04781. Epub 2018 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验