Suppr超能文献

单细胞微流控阻抗细胞术:使用数据分析从原始信号到细胞表型。

Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics.

机构信息

Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.

出版信息

Lab Chip. 2021 Jan 5;21(1):22-54. doi: 10.1039/d0lc00840k.

Abstract

The biophysical analysis of single-cells by microfluidic impedance cytometry is emerging as a label-free and high-throughput means to stratify the heterogeneity of cellular systems based on their electrophysiology. Emerging applications range from fundamental life-science and drug assessment research to point-of-care diagnostics and precision medicine. Recently, novel chip designs and data analytic strategies are laying the foundation for multiparametric cell characterization and subpopulation distinction, which are essential to understand biological function, follow disease progression and monitor cell behaviour in microsystems. In this tutorial review, we present a comparative survey of the approaches to elucidate cellular and subcellular features from impedance cytometry data, covering the related subjects of device design, data analytics (i.e., signal processing, dielectric modelling, population clustering), and phenotyping applications. We give special emphasis to the exciting recent developments of the technique (timeframe 2017-2020) and provide our perspective on future challenges and directions. Its synergistic application with microfluidic separation, sensor science and machine learning can form an essential toolkit for label-free quantification and isolation of subpopulations to stratify heterogeneous biosystems.

摘要

通过微流控阻抗细胞术对单细胞进行生物物理分析,正在成为一种基于电生理学对细胞系统异质性进行分层的无标记、高通量方法。新兴应用范围从基础生命科学和药物评估研究到即时诊断和精准医疗。最近,新型芯片设计和数据分析策略为多参数细胞特征分析和亚群区分奠定了基础,这对于理解生物功能、跟踪疾病进展和监测微系统中的细胞行为至关重要。在本教程综述中,我们对从阻抗细胞术数据中阐明细胞和亚细胞特征的方法进行了比较调查,涵盖了设备设计、数据分析(即信号处理、介电建模、群体聚类)和表型应用等相关主题。我们特别强调了该技术的令人兴奋的最新发展(2017-2020 年时间框架),并对未来的挑战和方向提出了看法。该技术与微流分离、传感器科学和机器学习的协同应用,可以形成无标记定量和亚群分离的基本工具包,从而对异质生物系统进行分层。

相似文献

引用本文的文献

9
Single-cell electro-mechanical shear flow deformability cytometry.单细胞机电剪切流变形性细胞术
Microsyst Nanoeng. 2024 Nov 22;10(1):173. doi: 10.1038/s41378-024-00810-5.

本文引用的文献

8
Raman image-activated cell sorting.拉曼图像激活细胞分选。
Nat Commun. 2020 Jul 10;11(1):3452. doi: 10.1038/s41467-020-17285-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验