Suppr超能文献

利用卷积神经网络对人类疟疾传播媒介种间隐匿形态变异进行划分。

Delimiting cryptic morphological variation among human malaria vector species using convolutional neural networks.

机构信息

Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, US.

Department of Computer Science and Statistics, University of Rhode Island, Kingston, Rhode Island, US.

出版信息

PLoS Negl Trop Dis. 2020 Dec 17;14(12):e0008904. doi: 10.1371/journal.pntd.0008904. eCollection 2020 Dec.

Abstract

Deep learning is a powerful approach for distinguishing classes of images, and there is a growing interest in applying these methods to delimit species, particularly in the identification of mosquito vectors. Visual identification of mosquito species is the foundation of mosquito-borne disease surveillance and management, but can be hindered by cryptic morphological variation in mosquito vector species complexes such as the malaria-transmitting Anopheles gambiae complex. We sought to apply Convolutional Neural Networks (CNNs) to images of mosquitoes as a proof-of-concept to determine the feasibility of automatic classification of mosquito sex, genus, species, and strains using whole-body, 2D images of mosquitoes. We introduce a library of 1, 709 images of adult mosquitoes collected from 16 colonies of mosquito vector species and strains originating from five geographic regions, with 4 cryptic species not readily distinguishable morphologically even by trained medical entomologists. We present a methodology for image processing, data augmentation, and training and validation of a CNN. Our best CNN configuration achieved high prediction accuracies of 96.96% for species identification and 98.48% for sex. Our results demonstrate that CNNs can delimit species with cryptic morphological variation, 2 strains of a single species, and specimens from a single colony stored using two different methods. We present visualizations of the CNN feature space and predictions for interpretation of our results, and we further discuss applications of our findings for future applications in malaria mosquito surveillance.

摘要

深度学习是区分图像类别的强大方法,越来越多的人有兴趣将这些方法应用于物种的划分,特别是在识别蚊子传播媒介方面。蚊子种类的视觉识别是蚊媒疾病监测和管理的基础,但在像疟疾传播的冈比亚按蚊复合体这样的蚊子传播媒介种复合体中,由于形态学上的隐性变化,可能会受到阻碍。我们试图将卷积神经网络 (CNN) 应用于蚊子图像,作为一个概念验证,以确定使用蚊子全身体、二维图像自动分类蚊子性别、属、种和品系的可行性。我们介绍了一个包含 1709 张成年蚊子图像的库,这些图像来自 16 个蚊子传播媒介种和品系的殖民地,来自五个地理区域,其中有 4 个隐性种即使是受过训练的医学昆虫学家也很难从形态上区分。我们提出了一种图像处理、数据扩充以及 CNN 训练和验证的方法。我们最好的 CNN 配置实现了物种识别的 96.96%和性别识别的 98.48%的高预测准确率。我们的结果表明,CNN 可以区分具有隐性形态变化的物种、单一物种的 2 个品系以及使用两种不同方法储存的单个殖民地的标本。我们展示了 CNN 特征空间的可视化和预测,以解释我们的结果,我们进一步讨论了我们的发现在未来疟疾蚊子监测中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea30/7745989/2842f0a4deb8/pntd.0008904.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验