Suppr超能文献

通过机器学习对选择性和灵敏的血清素传感器进行定向进化。

Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning.

机构信息

Departments of Biochemistry and Molecular Medicine, Chemistry, Statistics, Molecular and Cellular Biology, and Physiology and Membrane Biology, the Center for Neuroscience, and Graduate Programs in Molecular, Cellular, and Integrative Physiology, Biochemistry, Molecular, Cellular and Developmental Biology and Neuroscience, University of California, Davis, Davis, CA 95616, USA.

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20174, USA.

出版信息

Cell. 2020 Dec 23;183(7):1986-2002.e26. doi: 10.1016/j.cell.2020.11.040. Epub 2020 Dec 16.

Abstract

Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which has been hampered by our inability to monitor serotonin release and transport with high spatial and temporal resolution. We developed and applied a binding-pocket redesign strategy, guided by machine learning, to create a high-performance, soluble, fluorescent serotonin sensor (iSeroSnFR), enabling optical detection of millisecond-scale serotonin transients. We demonstrate that iSeroSnFR can be used to detect serotonin release in freely behaving mice during fear conditioning, social interaction, and sleep/wake transitions. We also developed a robust assay of serotonin transporter function and modulation by drugs. We expect that both machine-learning-guided binding-pocket redesign and iSeroSnFR will have broad utility for the development of other sensors and in vitro and in vivo serotonin detection, respectively.

摘要

血清素在认知中起着核心作用,是大多数精神疾病药物的靶点。现有的药物疗效有限;创造更好的版本将需要更好地了解血清素能电路,这一直受到我们无法以高时空分辨率监测血清素释放和转运的阻碍。我们开发并应用了一种由机器学习指导的结合口袋重新设计策略,创建了一种高性能、可溶性、荧光血清素传感器(iSeroSnFR),能够光学检测毫秒级的血清素瞬变。我们证明,iSeroSnFR 可用于在恐惧条件反射、社交互动和睡眠/觉醒转变期间检测自由行为小鼠中的血清素释放。我们还开发了一种用于检测血清素转运体功能和药物调节的可靠方法。我们预计,机器学习指导的结合口袋重新设计和 iSeroSnFR 将分别在其他传感器的开发以及体外和体内血清素检测方面具有广泛的用途。

相似文献

3
Stress Enables Reinforcement-Elicited Serotonergic Consolidation of Fear Memory.应激促进强化引发的恐惧记忆的5-羟色胺能巩固。
Biol Psychiatry. 2016 May 15;79(10):814-822. doi: 10.1016/j.biopsych.2015.06.025. Epub 2015 Jul 2.

引用本文的文献

9
Protein Engineering for Spatiotemporally Resolved Cellular Monitoring.用于时空分辨细胞监测的蛋白质工程
Annu Rev Anal Chem (Palo Alto Calif). 2025 May;18(1):217-240. doi: 10.1146/annurev-anchem-070124-035857. Epub 2025 Feb 25.

本文引用的文献

2
A genetically encoded sensor for measuring serotonin dynamics.用于测量血清素动态变化的基因编码传感器。
Nat Neurosci. 2021 May;24(5):746-752. doi: 10.1038/s41593-021-00823-7. Epub 2021 Apr 5.
5
Serotonin transport in the 21st century.二十一世纪的血清素转运蛋白
J Gen Physiol. 2019 Nov 4;151(11):1248-1264. doi: 10.1085/jgp.201812066. Epub 2019 Sep 30.
7
Machine-learning-guided directed evolution for protein engineering.基于机器学习的定向进化蛋白质工程。
Nat Methods. 2019 Aug;16(8):687-694. doi: 10.1038/s41592-019-0496-6. Epub 2019 Jul 15.
8
A genetically encoded fluorescent sensor for in vivo imaging of GABA.用于 GABA 体内成像的基因编码荧光传感器。
Nat Methods. 2019 Aug;16(8):763-770. doi: 10.1038/s41592-019-0471-2. Epub 2019 Jul 15.
9
Machine learning-assisted directed protein evolution with combinatorial libraries.机器学习辅助的组合文库定向蛋白质进化。
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8852-8858. doi: 10.1073/pnas.1901979116. Epub 2019 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验