Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia.
Department of Natural Sciences, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia.
Int J Mol Sci. 2020 Dec 15;21(24):9562. doi: 10.3390/ijms21249562.
MicroRNAs play a crucial role in eukaryotic gene regulation. For a long time, only little was known about microRNA-based gene regulatory mechanisms in polyploid animal genomes due to difficulties of polyploid genome assembly. However, in recent years, several polyploid genomes of fish, amphibian, and even invertebrate species have been sequenced and assembled. Here we investigated several key microRNA-associated genes in the recently sequenced sterlet () genome, whose lineage has undergone a whole genome duplication around 180 MYA. We show that two paralogs of , , , and as well as most genes have been retained after the acipenserid-specific whole genome duplication, while and genes have lost one paralog. While most diploid vertebrates possess only a single copy of , we strikingly found four paralogs of this gene in the sterlet genome, derived from a tandem segmental duplication that occurred prior to the last whole genome duplication. and look to be prone to additional segment duplications producing up to four-five paralog copies in ray-finned fishes. We demonstrate for the first time exon microsatellite amplification in the acipenserid gene, resulting in a highly variable protein product, which may indicate sub- or neofunctionalization. Paralogous copies of most microRNA metabolism genes exhibit different expression profiles in various tissues and remain functional despite the rediploidization process. Subfunctionalization of microRNA processing gene paralogs may be beneficial for different pathways of microRNA metabolism. Genetic variability of microRNA processing genes may represent a substrate for natural selection, and, by increasing genetic plasticity, could facilitate adaptations to changing environments
MicroRNAs 在真核生物基因调控中发挥着关键作用。由于多倍体基因组组装的困难,长期以来,人们对多倍体动物基因组中基于 microRNA 的基因调控机制知之甚少。然而,近年来,已经测序和组装了几种鱼类、两栖类甚至无脊椎动物的多倍体基因组。在这里,我们研究了最近测序的鲟鱼 () 基因组中几个关键的 microRNA 相关基因,其谱系在大约 180 百万年前经历了全基因组复制。我们表明,在 acipenserid 特异性全基因组复制后, 、 、 和 基因的两个旁系同源物以及大多数 基因都被保留了下来,而 和 基因失去了一个旁系同源物。虽然大多数二倍体脊椎动物只拥有一个拷贝的 ,但我们惊人地发现鲟鱼基因组中有这个基因的四个旁系同源物,来源于发生在最后一次全基因组复制之前的串联片段重复。 和 似乎容易发生额外的片段重复,在射线鳍鱼类中产生多达四到五个旁系同源物拷贝。我们首次在 acipenserid 基因中证明了外显子微卫星扩增,导致高度可变的蛋白质产物,这可能表明亚功能化或新功能化。大多数 microRNA 代谢基因的旁系同源物在不同组织中的表达谱不同,尽管经历了 rediploidization 过程,但仍保持功能。microRNA 处理基因旁系同源物的亚功能化可能对 microRNA 代谢的不同途径有益。microRNA 处理基因的遗传变异可能代表自然选择的底物,并通过增加遗传可塑性,促进对不断变化的环境的适应。