Institute for Fundamental Biomedical Research.
Institute for Bio-innovation, Biomedical Sciences Research Centre "Alexander Fleming," Vari, 16672, Greece.
J Neurosci. 2021 Jan 27;41(4):797-810. doi: 10.1523/JNEUROSCI.1920-20.2020. Epub 2020 Dec 17.
Although Tau accumulation is clearly linked to pathogenesis in Alzheimer's disease and other Tauopathies, the mechanism that initiates the aggregation of this highly soluble protein remains largely unanswered. Interestingly, Tau can be induced to form fibrillar filaments by oxidation of its two cysteine residues, generating an intermolecular disulfide bond that promotes dimerization and fibrillization. The recently solved structures of Tau filaments revealed that the two cysteine residues are not structurally equivalent since Cys-322 is incorporated into the core of the fibril, whereas Cys-291 projects away from the core to form the fuzzy coat. Here, we examined whether mutation of these cysteines to alanine affects differentially Tau mediated toxicity and dysfunction in the well-established Tauopathy model. Experiments were conducted with both sexes, or with either sex. Each cysteine residue contributes differentially to Tau stability, phosphorylation status, aggregation propensity, resistance to stress, learning, and memory. Importantly, our work uncovers a critical role of Cys-322 in determining Tau toxicity and dysfunction. Cysteine-291 and Cysteine-322, the only two cysteine residues of Tau present in only 4-Repeat or all isoforms, respectively, have competing functions: as the key residues in the catalytic center, they enable Tau auto-acetylation; and as residues within the microtubule-binding repeat region are important not only for Tau function but also instrumental in the initiation of Tau aggregation. In this study, we present the first evidence that their substitution leads to differential consequences on Tau's physiological and pathophysiological functions. These differences raise the possibility that cysteine residues play a potential role in determining the functional diversity between isoforms.
虽然 Tau 聚集显然与阿尔茨海默病和其他 Tau 病的发病机制有关,但启动这种高可溶性蛋白聚集的机制在很大程度上仍未得到解答。有趣的是,Tau 可以通过两个半胱氨酸残基的氧化诱导形成纤维状细丝,产生促进二聚体和纤维化的分子间二硫键。最近解决的 Tau 细丝结构表明,这两个半胱氨酸残基在结构上并不等效,因为 Cys-322 被纳入纤维的核心,而 Cys-291 从核心伸出形成模糊外套。在这里,我们研究了这些半胱氨酸突变为丙氨酸是否会影响已建立的 Tau 病模型中 Tau 介导的毒性和功能障碍的差异。实验在两性中进行,或仅在两性中的一性中进行。每个半胱氨酸残基对 Tau 的稳定性、磷酸化状态、聚集倾向、对压力的抵抗力、学习和记忆的影响不同。重要的是,我们的工作揭示了 Cys-322 在确定 Tau 毒性和功能障碍中的关键作用。半胱氨酸-291 和半胱氨酸-322 是 Tau 中仅存在于 4 重复或所有同工型中的仅有的两个半胱氨酸残基,分别具有竞争性功能:作为催化中心的关键残基,它们使 Tau 自身乙酰化;作为微管结合重复区域内的残基,它们不仅对 Tau 功能很重要,而且对 Tau 聚集的启动也很重要。在这项研究中,我们首次提供证据表明,它们的取代会导致 Tau 的生理和病理生理功能的差异。这些差异提出了这样一种可能性,即半胱氨酸残基在确定同工型之间的功能多样性方面可能发挥作用。