Wang Lei, Xin Binbin, Elsukova Anna, Eklund Per, Solin Niclas
Electronic and Photonic Materials Division, Biomolecular and Organic Electronics, Department of Physics, Chemistry, and Biology, Linköping University, Linköping 581 83, Sweden.
Thin Film Physics Division, Department of Physics, Chemistry, and Biology, Linköping University, Linköping 581 83, Sweden.
ACS Sustain Chem Eng. 2020 Nov 30;8(47):17368-17378. doi: 10.1021/acssuschemeng.0c05048. Epub 2020 Nov 17.
Hybrids between biopolymeric materials and low-cost conductive carbon-based materials are interesting materials for applications in electronics, potentially reducing the need for materials that generate environmentally harmful electronic waste. Herein we investigate a scalable ball-milling method to form graphene nanoplatelets (GNPs) by milling graphite flakes with aqueous dispersions of proteins or protein nanofibrils (PNFs). Aqueous GNP dispersions with high concentrations (up to 3.2 mg mL) are obtained under appropriate conditions. The PNFs/proteins help to exfoliate graphite and stabilize the resulting GNP dispersions by electrostatic repulsion. PNFs are prepared from hen egg white lysozyme (HEWL) and β-lactoglobulin (BLG). The GNP dispersions can be processed into free-standing films having an electrical conductivity of up to 110 S m. Alternatively, the GNP dispersions can be drop-cast on PET substrates, resulting in mechanically flexible films having an electrical conductivity of up to 65 S m. The drop-cast films are investigated regarding their thermoelectric properties, having Seebeck coefficients of about 50 μV K. By annealing drop-cast films and thus carbonizing residual PNFs, an increase of electrical conductivity, coupled with a modest decrease in Seebeck coefficient, is obtained resulting in materials displaying power factors of up to 4.6 μW m K.
生物聚合材料与低成本导电碳基材料的复合材料是电子应用领域中令人感兴趣的材料,有望减少对产生环境有害电子废物的材料的需求。在此,我们研究了一种可扩展的球磨方法,通过将石墨薄片与蛋白质或蛋白质纳米纤维(PNF)的水分散体研磨来形成石墨烯纳米片(GNP)。在适当条件下可获得高浓度(高达3.2 mg/mL)的GNP水分散体。PNF/蛋白质有助于剥离石墨,并通过静电排斥作用稳定所得的GNP分散体。PNF由鸡蛋清溶菌酶(HEWL)和β-乳球蛋白(BLG)制备。GNP分散体可加工成电导率高达110 S/m的独立薄膜。或者,可将GNP分散体滴铸在PET基材上,得到电导率高达65 S/m的机械柔性薄膜。对滴铸薄膜的热电性能进行了研究,其塞贝克系数约为50 μV/K。通过对滴铸薄膜进行退火处理,从而使残留的PNF碳化,可提高电导率,同时塞贝克系数略有降低,得到功率因数高达4.6 μW/(m²·K²)的材料。