Suppr超能文献

常见问题,通用数据模型解决方案:用于卫生技术评估的证据生成。

Common Problems, Common Data Model Solutions: Evidence Generation for Health Technology Assessment.

机构信息

National Institute for Health and Care Excellence, London, United Kingdom.

Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.

出版信息

Pharmacoeconomics. 2021 Mar;39(3):275-285. doi: 10.1007/s40273-020-00981-9. Epub 2020 Dec 18.

Abstract

There is growing interest in using observational data to assess the safety, effectiveness, and cost effectiveness of medical technologies, but operational, technical, and methodological challenges limit its more widespread use. Common data models and federated data networks offer a potential solution to many of these problems. The open-source Observational and Medical Outcomes Partnerships (OMOP) common data model standardises the structure, format, and terminologies of otherwise disparate datasets, enabling the execution of common analytical code across a federated data network in which only code and aggregate results are shared. While common data models are increasingly used in regulatory decision making, relatively little attention has been given to their use in health technology assessment (HTA). We show that the common data model has the potential to facilitate access to relevant data, enable multidatabase studies to enhance statistical power and transfer results across populations and settings to meet the needs of local HTA decision makers, and validate findings. The use of open-source and standardised analytics improves transparency and reduces coding errors, thereby increasing confidence in the results. Further engagement from the HTA community is required to inform the appropriate standards for mapping data to the common data model and to design tools that can support evidence generation and decision making.

摘要

越来越多的人关注使用观察性数据来评估医疗技术的安全性、有效性和成本效益,但是运营、技术和方法方面的挑战限制了其更广泛的应用。通用数据模型和联邦数据网络为解决许多这些问题提供了一个潜在的解决方案。开源观察性和医疗结局伙伴关系(OMOP)通用数据模型标准化了结构、格式和术语,从而使联邦数据网络中的通用分析代码能够执行,其中只共享代码和聚合结果。虽然通用数据模型在监管决策中越来越多地被使用,但在卫生技术评估(HTA)中相对较少关注它们的使用。我们表明,通用数据模型有可能促进访问相关数据,能够进行多数据库研究以提高统计能力,并在人群和环境之间转移结果,以满足当地 HTA 决策者的需求并验证发现。使用开源和标准化分析可以提高透明度并减少编码错误,从而增加对结果的信心。需要 HTA 社区进一步参与,以告知将数据映射到通用数据模型的适当标准,并设计能够支持证据生成和决策的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09f1/7882589/14d2d953e028/40273_2020_981_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验