Suppr超能文献

重新构想的美国公共卫生监测。

US public health surveillance, reimagined.

作者信息

Guralnik Elina

机构信息

Department of Health Administration and Policy College of Public Health, George Mason University Fairfax VA USA.

出版信息

Learn Health Syst. 2024 Aug 14;8(4):e10445. doi: 10.1002/lrh2.10445. eCollection 2024 Oct.

Abstract

INTRODUCTION

This study presents two novel concepts for standardizing electronic health records (EHR)-based public health surveillance through utilization of existing informatics methods and data platforms.

METHODS

Drawing from the collective experience in applied epidemiology, health services research and health informatics, the author presents a vision for an alternative path to public health surveillance by repurposing existing tools and resources, such as (1) computable phenotypes which have already been created and validated for a variety of chronic diseases of interest to public health and (2) large data platforms/collaboratives, such as All of Us Research Program and National COVID Cohort Collaborative. Opportunities and challenges are discussed regarding EHR-based chronic disease surveillance, as well as the concept of phenotype definitions and large data platforms reuse for public health needs.

RESULTS/FRAMEWORK: Reusing of computable phenotypes for EHR-based public health surveillance would require secure data platforms and nationally representative data. Standardization metrics for reuse of previously developed and validated computable phenotypes are also necessary and are currently being developed by the author. This study presents a reimagined Learning Health System framework by incorporating Public Health and two novel concept sets of solutions into the healthcare ecosystem.

CONCLUSION/NEXT STEPS: Alternative approaches to limited resources and current infrastructure of the US Public Health System, especially as applied to disease surveillance, are needed and may be possible when repurposing the resources and methodologies across the Learning Health System.

摘要

引言

本研究提出了两个新颖的概念,旨在通过利用现有的信息学方法和数据平台,对基于电子健康记录(EHR)的公共卫生监测进行标准化。

方法

作者借鉴应用流行病学、卫生服务研究和卫生信息学方面的集体经验,提出了一种通过重新利用现有工具和资源来实现公共卫生监测的替代途径的设想,例如(1)已经为公共卫生感兴趣的多种慢性病创建并验证的可计算表型,以及(2)大型数据平台/合作项目,如“我们所有人”研究计划和国家新冠队列协作项目。讨论了基于EHR的慢性病监测的机遇和挑战,以及表型定义和大型数据平台用于公共卫生需求的重用概念。

结果/框架:将可计算表型重新用于基于EHR的公共卫生监测需要安全的数据平台和具有全国代表性的数据。对于先前开发和验证的可计算表型的重用,标准化指标也是必要的,作者目前正在制定这些指标。本研究通过将公共卫生以及两个新颖的解决方案概念集纳入医疗生态系统,提出了一个重新构想的学习型健康系统框架。

结论/下一步措施:美国公共卫生系统的有限资源和现有基础设施需要替代方法,特别是在应用于疾病监测时,当在整个学习型健康系统中重新利用资源和方法时,这可能是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd1c/11493541/ee256f1b92a1/LRH2-8-e10445-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验