Li Xiaojin, Huang Yan, Cui Licong, Tao Shiqiang, Zhang Guo-Qiang
McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
AMIA Annu Symp Proc. 2025 May 22;2024:693-702. eCollection 2024.
Efficient querying for medication information in Electronic Health Record (EHR) datasets is crucial for effective patient care and clinical research. To address the complexity and data volume challenges involved in efficient medication information retrieval, we propose an ontology-driven medication query (ODMQ) optimization approach, leveraging the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). Integrating semantic ontology structures from the OMOP CDM can help enhance query accuracy and efficiency by broadening the scope of relevant medication terms like drug names, National Drug Codes, and generics, resulting in more comprehensive query outcomes than traditional methods. ODMQ significantly reduces manual search time and enhances query capabilities. We validate ODMQ's efficacy using real-world COVID-19 EHR data, demonstrating improved query performance. Through a comprehensive manual review, ODMQ ensures that expanded search terms are relevant to user inputs. It also includes an intuitive query interface and visualizes patient history for result validation and exploration.
在电子健康记录(EHR)数据集中高效查询用药信息对于有效的患者护理和临床研究至关重要。为应对高效检索用药信息所涉及的复杂性和数据量挑战,我们提出一种本体驱动的用药查询(ODMQ)优化方法,利用观察性医疗结局合作组织(OMOP)通用数据模型(CDM)。整合来自OMOP CDM的语义本体结构,通过拓宽诸如药品名称、国家药品代码和通用名等相关用药术语的范围,有助于提高查询的准确性和效率,从而产生比传统方法更全面的查询结果。ODMQ显著减少人工搜索时间并增强查询能力。我们使用真实世界的COVID-19 EHR数据验证了ODMQ的有效性,证明其查询性能有所提升。通过全面的人工审查,ODMQ确保扩展的搜索词与用户输入相关。它还包括一个直观的查询界面,并可视化患者病史以进行结果验证和探索。