Suppr超能文献

基于机器学习的面部表情识别及其对癌症患者痛苦程度的评估。

Facial Expression Recognition With Machine Learning and Assessment of Distress in Patients With Cancer.

机构信息

West China Hospital.

University of Electronic Science and Technology of China.

出版信息

Oncol Nurs Forum. 2021 Jan 4;48(1):81-93. doi: 10.1188/21.ONF.81-93.

Abstract

OBJECTIVES

To estimate the effectiveness of combining facial expression recognition and machine learning for better detection of distress.

SAMPLE & SETTING: 232 patients with cancer in Sichuan University West China Hospital in Chengdu, China.

METHODS & VARIABLES: The Distress Thermometer (DT) and Hospital Anxiety and Depression Scale (HADS) were used as instruments. The HADS included scores for anxiety (HADS-A), depression (HADS-D), and total score (HADS-T). Distressed patients were defined by the DT cutoff score of 4, the HADS-A cutoff score of 8 or 9, the HADS-D cutoff score of 8 or 9, or the HADS-T cutoff score of 14 or 15. The authors applied histogram of oriented gradients to extract facial expression features from face images, and used a support vector machine as the classifier.

RESULTS

The facial expression features showed feasible differentiation ability on cases classified by DT and HADS.

IMPLICATIONS FOR NURSING

Facial expression recognition could serve as a supplementary screening tool for improving the accuracy of distress assessment and guide strategies for treatment and nursing.

摘要

目的

评估结合面部表情识别和机器学习以提高痛苦检测效果。

样本和设置

在中国成都四川大学华西医院的 232 名癌症患者。

方法和变量

使用痛苦温度计(DT)和医院焦虑和抑郁量表(HADS)作为工具。HADS 包括焦虑评分(HADS-A)、抑郁评分(HADS-D)和总评分(HADS-T)。通过 DT 截断值为 4、HADS-A 截断值为 8 或 9、HADS-D 截断值为 8 或 9 或 HADS-T 截断值为 14 或 15 来定义痛苦患者。作者应用方向梯度直方图从面部图像中提取面部表情特征,并使用支持向量机作为分类器。

结果

面部表情特征在 DT 和 HADS 分类的病例中表现出可行的区分能力。

对护理的意义

面部表情识别可以作为一种补充筛查工具,以提高痛苦评估的准确性,并指导治疗和护理策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验