Suppr超能文献

一种用于破译 SARS-CoV-2 在无生命表面粘性的纳米力学研究。

A Nanomechanical Study on Deciphering the Stickiness of SARS-CoV-2 on Inanimate Surfaces.

机构信息

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.

School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.

出版信息

ACS Appl Mater Interfaces. 2020 Dec 30;12(52):58360-58368. doi: 10.1021/acsami.0c16800. Epub 2020 Dec 18.

Abstract

The SARS-CoV-2 virus that causes the COVID-19 epidemic can be transmitted via respiratory droplet-contaminated surfaces or fomites, which urgently requires a fundamental understanding of intermolecular interactions of the coronavirus with various surfaces. The corona-like component of the outer surface of the SARS-CoV-2 virion, named spike protein, is a key target for the adsorption and persistence of SARS-CoV-2 on various surfaces. However, a lack of knowledge in intermolecular interactions between spike protein and different substrate surfaces has resulted in ineffective preventive measures and inaccurate information. Herein, we quantified the surface interaction and adhesion energy of SARS-CoV-2 spike protein with a series of inanimate surfaces via atomic force microscopy under a simulated respiratory droplet environment. Among four target surfaces, polystyrene was found to exhibit the strongest adhesion, followed by stainless steel (SS), gold, and glass. The environmental factors (e.g., pH and temperature) played a role in mediating the spike protein binding. According to systematic quantification on a series of inanimate surfaces, the adhesion energy of spike protein was found to be (i) 0-1 mJ/m for hydrophilic inorganics (e.g., silica and glass) due to the lack of hydrogen bonding, (ii) 2-9 mJ/m for metals (e.g., alumina, SS, and copper) due to the variation of their binding capacity, and (iii) 6-11 mJ/m for hydrophobic polymers (e.g., medical masks, safety glass, and nitrile gloves) due to stronger hydrophobic interactions. The quantitative analysis of the nanomechanics of spike proteins will enable a protein-surface model database for SARS-CoV-2 to help generate effective preventive strategies to tackle the epidemic.

摘要

导致 COVID-19 疫情的 SARS-CoV-2 病毒可通过呼吸道飞沫污染的表面或污染物传播,这迫切需要深入了解冠状病毒与各种表面的分子间相互作用。SARS-CoV-2 病毒粒子外表面的类冠状成分,称为刺突蛋白,是 SARS-CoV-2 在各种表面上吸附和持续存在的关键目标。然而,由于缺乏刺突蛋白与不同基底表面之间的分子间相互作用的知识,导致预防措施无效和信息不准确。在此,我们通过原子力显微镜在模拟的呼吸道飞沫环境下,定量研究了 SARS-CoV-2 刺突蛋白与一系列无生命表面之间的表面相互作用和粘附能。在四个目标表面中,发现聚苯乙烯表现出最强的粘附力,其次是不锈钢(SS)、金和玻璃。环境因素(例如 pH 值和温度)在调节刺突蛋白结合中起作用。根据对一系列无生命表面的系统定量研究,发现刺突蛋白的粘附能为:(i)由于缺乏氢键,亲水无机物(例如二氧化硅和玻璃)为 0-1 mJ/m;(ii)由于其结合能力的变化,金属(例如氧化铝、SS 和铜)为 2-9 mJ/m;(iii)由于更强的疏水相互作用,疏水性聚合物(例如医用口罩、安全玻璃和丁腈手套)为 6-11 mJ/m。刺突蛋白的纳米力学定量分析将为 SARS-CoV-2 提供一个蛋白质-表面模型数据库,以帮助制定有效的预防策略来应对疫情。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验