Suppr超能文献

使用空间自适应滤波对扩散磁共振成像数据进行高斯化处理。

Gaussianization of Diffusion MRI Data Using Spatially Adaptive Filtering.

作者信息

Liu Feihong, Feng Jun, Chen Geng, Shen Dinggang, Yap Pew-Thian

机构信息

School of Information Science and Technology, Northwest University, Xi'an, China; Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC, U.S.A.

School of Information Science and Technology, Northwest University, Xi'an, China; State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, School of Information Science and Technology, Northwest University, Xi'an, China.

出版信息

Med Image Anal. 2021 Feb;68:101828. doi: 10.1016/j.media.2020.101828. Epub 2020 Oct 17.

Abstract

Diffusion MRI magnitude data, typically Rician or noncentral χ distributed, is affected by the noise floor, which falsely elevates signal, reduces image contrast, and biases estimation of diffusion parameters. Noise floor can be avoided by extracting real-valued Gaussian-distributed data from complex diffusion-weighted images via phase correction, which is performed by rotating each complex diffusion-weighted image based on its phase so that the actual image content resides in the real part. The imaginary part can then be discarded, leaving only the real part to form a Gaussian-noise image that is not confounded by the noise floor. The effectiveness of phase correction depends on the estimation of the background phase associated with factors such as brain motion, cardiac pulsation, perfusion, and respiration. Most existing smoothing techniques, applied to the real and imaginary images for phase estimation, assume spatially-stationary noise. This assumption does not necessarily hold in real data. In this paper, we introduce an adaptive filtering approach, called multi-kernel filter (MKF), for image smoothing catering to spatially-varying noise. Inspired by the mechanisms of human vision, MKF employs a bilateral filter with spatially-varying kernels. Extensive experiments demonstrate that MKF significantly improves spatial adaptivity and outperforms various state-of-the-art filters in signal Gaussianization.

摘要

扩散磁共振成像幅度数据通常呈莱斯分布或非中心卡方分布,会受到本底噪声的影响,本底噪声会错误地提高信号、降低图像对比度并使扩散参数估计产生偏差。通过相位校正从复杂的扩散加权图像中提取实值高斯分布数据,可以避免本底噪声,相位校正通过基于其相位旋转每个复杂的扩散加权图像来执行,以使实际图像内容位于实部。然后可以丢弃虚部,仅保留实部以形成不受本底噪声干扰的高斯噪声图像。相位校正的有效性取决于与诸如脑运动、心脏搏动、灌注和呼吸等因素相关的背景相位估计。大多数现有的用于相位估计的平滑技术应用于实部和虚部图像时,都假设噪声在空间上是平稳的。这种假设在实际数据中不一定成立。在本文中,我们引入了一种自适应滤波方法,称为多核滤波器(MKF),用于适应空间变化噪声的图像平滑。受人类视觉机制的启发,MKF采用具有空间变化核的双边滤波器。大量实验表明,MKF显著提高了空间适应性,并且在信号高斯化方面优于各种先进滤波器。

相似文献

5
Adaptive phase correction of diffusion-weighted images.扩散加权图像的自适应相位校正。
Neuroimage. 2020 Feb 1;206:116274. doi: 10.1016/j.neuroimage.2019.116274. Epub 2019 Oct 17.
7
9
Rician noise removal in diffusion tensor MRI.扩散张量磁共振成像中的莱斯噪声去除
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):117-25. doi: 10.1007/11866565_15.

本文引用的文献

2
Denoising of Diffusion MRI Data via Graph Framelet Matching in x-q Space.基于 x-q 空间图框匹配的扩散磁共振数据去噪。
IEEE Trans Med Imaging. 2019 Dec;38(12):2838-2848. doi: 10.1109/TMI.2019.2915629. Epub 2019 May 8.
5
Curvature Filters Efficiently Reduce Certain Variational Energies.曲率滤波器可有效降低某些变分能量。
IEEE Trans Image Process. 2017 Apr;26(4):1786-1798. doi: 10.1109/TIP.2017.2658954. Epub 2017 Jan 26.
6
Denoising of diffusion MRI using random matrix theory.使用随机矩阵理论对扩散磁共振成像进行去噪
Neuroimage. 2016 Nov 15;142:394-406. doi: 10.1016/j.neuroimage.2016.08.016. Epub 2016 Aug 11.
7
Diffusion MRI noise mapping using random matrix theory.使用随机矩阵理论的扩散磁共振成像噪声映射
Magn Reson Med. 2016 Nov;76(5):1582-1593. doi: 10.1002/mrm.26059. Epub 2015 Nov 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验