Suppr超能文献

用于系统数据到模型工作流程的脉冲神经网络构建器。

A Spiking Neural Network Builder for Systematic Data-to-Model Workflow.

作者信息

Gutierrez Carlos Enrique, Skibbe Henrik, Musset Hugo, Doya Kenji

机构信息

Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.

Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako, Japan.

出版信息

Front Neuroinform. 2022 Jul 13;16:855765. doi: 10.3389/fninf.2022.855765. eCollection 2022.

Abstract

In building biological neural network models, it is crucial to efficiently convert diverse anatomical and physiological data into parameters of neurons and synapses and to systematically estimate unknown parameters in reference to experimental observations. Web-based tools for systematic model building can improve the transparency and reproducibility of computational models and can facilitate collaborative model building, validation, and evolution. Here, we present a framework to support collaborative data-driven development of spiking neural network (SNN) models based on the Entity-Relationship (ER) data description commonly used in large-scale business software development. We organize all data attributes, including species, brain regions, neuron types, projections, neuron models, and references as tables and relations within a database management system (DBMS) and provide GUI interfaces for data registration and visualization. This allows a robust "business-oriented" data representation that supports collaborative model building and traceability of source information for every detail of a model. We tested this data-to-model framework in cortical and striatal network models by successfully combining data from papers with existing neuron and synapse models and by generating NEST simulation codes for various network sizes. Our framework also helps to check data integrity and consistency and data comparisons across species. The framework enables the modeling of any region of the brain and is being deployed to support the integration of anatomical and physiological datasets from the brain/MINDS project for systematic SNN modeling of the marmoset brain.

摘要

在构建生物神经网络模型时,关键在于有效地将各种解剖学和生理学数据转换为神经元和突触的参数,并根据实验观察系统地估计未知参数。基于网络的系统模型构建工具可以提高计算模型的透明度和可重复性,并有助于协作式模型构建、验证和演进。在此,我们提出了一个框架,以支持基于大规模商业软件开发中常用的实体-关系(ER)数据描述,对脉冲神经网络(SNN)模型进行协作式数据驱动开发。我们将所有数据属性,包括物种、脑区、神经元类型、投射、神经元模型和参考文献,组织为数据库管理系统(DBMS)中的表和关系,并提供用于数据注册和可视化的图形用户界面(GUI)。这允许进行强大的“面向业务”的数据表示,支持协作式模型构建以及对模型每个细节的源信息进行可追溯性。我们通过成功地将论文中的数据与现有的神经元和突触模型相结合,并为各种网络规模生成NEST模拟代码,在皮质和纹状体网络模型中测试了这个数据到模型的框架。我们的框架还有助于检查数据的完整性和一致性,以及跨物种的数据比较。该框架能够对大脑的任何区域进行建模,并且正在被部署以支持整合来自brain/MINDS项目的解剖学和生理学数据集,用于对狨猴大脑进行系统的SNN建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8b2/9326306/8a26e1fc13c3/fninf-16-855765-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验