Suppr超能文献

前馈和递归神经网络在左心室力学模拟中的应用。

Application of feed forward and recurrent neural networks in simulation of left ventricular mechanics.

机构信息

3DT Holdings LLC, San Diego, CA, USA.

California Medical Innovations Institute, 11107 Roselle, San Diego, CA, 92121, USA.

出版信息

Sci Rep. 2020 Dec 18;10(1):22298. doi: 10.1038/s41598-020-79191-4.

Abstract

An understanding of left ventricle (LV) mechanics is fundamental for designing better preventive, diagnostic, and treatment strategies for improved heart function. Because of the costs of clinical and experimental studies to treat and understand heart function, respectively, in-silico models play an important role. Finite element (FE) models, which have been used to create in-silico LV models for different cardiac health and disease conditions, as well as cardiac device design, are time-consuming and require powerful computational resources, which limits their use when real-time results are needed. As an alternative, we sought to use deep learning (DL) for LV in-silico modeling. We used 80 four-chamber heart FE models for feed forward, as well as recurrent neural network (RNN) with long short-term memory (LSTM) models for LV pressure and volume. We used 120 LV-only FE models for training LV stress predictions. The active material properties of the myocardium and time were features for the LV pressure and volume training, and passive material properties and element centroid coordinates were features of the LV stress prediction models. For six test FE models, the DL error for LV volume was 1.599 ± 1.227 ml, and the error for pressure was 1.257 ± 0.488 mmHg; for 20 LV FE test examples, the mean absolute errors were, respectively, 0.179 ± 0.050 for myofiber, 0.049 ± 0.017 for cross-fiber, and 0.039 ± 0.011 kPa for shear stress. After training, the DL runtime was in the order of seconds whereas equivalent FE runtime was in the order of several hours (pressure and volume) or 20 min (stress). We conclude that using DL, LV in-silico simulations can be provided for applications requiring real-time results.

摘要

理解左心室 (LV) 的力学特性对于设计更好的预防、诊断和治疗策略以改善心脏功能至关重要。由于分别用于治疗和理解心脏功能的临床和实验研究的成本,因此计算模型起着重要的作用。有限元 (FE) 模型已用于创建不同心脏健康和疾病状况以及心脏设备设计的虚拟 LV 模型,但是这些模型非常耗时,需要强大的计算资源,这限制了在需要实时结果时的使用。作为替代方案,我们寻求使用深度学习 (DL) 进行 LV 计算建模。我们使用 80 个四腔心脏 FE 模型进行前馈,以及具有长短期记忆 (LSTM) 的递归神经网络 (RNN) 模型进行 LV 压力和容量建模。我们使用 120 个仅 LV 的 FE 模型进行 LV 应力预测训练。心肌的主动材料特性和时间是 LV 压力和容量训练的特征,而被动材料特性和单元质心坐标是 LV 应力预测模型的特征。对于六个测试 FE 模型,LV 体积的 DL 误差为 1.599 ± 1.227 ml,压力误差为 1.257 ± 0.488 mmHg;对于 20 个 LV FE 测试示例,分别为肌纤维的平均绝对误差为 0.179 ± 0.050,交叉纤维的平均绝对误差为 0.049 ± 0.017,剪切应力的平均绝对误差为 0.039 ± 0.011 kPa。训练后,DL 的运行时间为几秒钟,而等效的 FE 运行时间为几个小时(压力和容量)或 20 分钟(应力)。我们得出结论,使用 DL,可以为需要实时结果的应用提供 LV 计算模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ac7/7749109/05834488fc10/41598_2020_79191_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验