MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
Cell Mol Life Sci. 2021 Apr;78(7):3503-3524. doi: 10.1007/s00018-020-03721-6. Epub 2020 Dec 19.
Members of the Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic (TLDc) protein family are associated with multiple neurodevelopmental disorders, although their exact roles in disease remain unclear. For example, nuclear receptor coactivator 7 (NCOA7) has been associated with autism, although almost nothing is known regarding the mode-of-action of this TLDc protein in the nervous system. Here we investigated the molecular function of NCOA7 in neurons and generated a novel mouse model to determine the consequences of deleting this locus in vivo. We show that NCOA7 interacts with the cytoplasmic domain of the vacuolar (V)-ATPase in the brain and demonstrate that this protein is required for normal assembly and activity of this critical proton pump. Neurons lacking Ncoa7 exhibit altered development alongside defective lysosomal formation and function; accordingly, Ncoa7 deletion animals exhibited abnormal neuronal patterning defects and a reduced expression of lysosomal markers. Furthermore, behavioural assessment revealed anxiety and social defects in mice lacking Ncoa7. In summary, we demonstrate that NCOA7 is an important V-ATPase regulatory protein in the brain, modulating lysosomal function, neuronal connectivity and behaviour; thus our study reveals a molecular mechanism controlling endolysosomal homeostasis that is essential for neurodevelopment.
Tre2/Bub2/Cdc16(TBC)、溶酶体基序(LysM)、结构域催化(TLDc)蛋白家族的成员与多种神经发育障碍有关,尽管它们在疾病中的确切作用仍不清楚。例如,核受体共激活因子 7(NCOA7)与自闭症有关,尽管几乎不知道这种 TLDc 蛋白在神经系统中的作用模式。在这里,我们研究了 NCOA7 在神经元中的分子功能,并生成了一种新型小鼠模型,以确定在体内删除该基因座的后果。我们表明,NCOA7 与大脑中的液泡(V)-ATPase 的细胞质结构域相互作用,并证明该蛋白对于该关键质子泵的正常组装和活性是必需的。缺乏 Ncoa7 的神经元表现出发育异常,同时伴有溶酶体形成和功能缺陷;因此,Ncoa7 缺失动物表现出异常的神经元模式缺陷和溶酶体标记物表达减少。此外,行为评估显示缺乏 Ncoa7 的小鼠表现出焦虑和社交缺陷。总之,我们证明 NCOA7 是大脑中重要的 V-ATPase 调节蛋白,调节溶酶体功能、神经元连接和行为;因此,我们的研究揭示了一种控制内溶酶体稳态的分子机制,这对神经发育至关重要。