Suppr超能文献

通过基于胸部CT的深度学习方法改善临床疾病亚型分类和未来事件预测。

Improving clinical disease subtyping and future events prediction through a chest CT-based deep learning approach.

作者信息

Singla Sumedha, Gong Mingming, Riley Craig, Sciurba Frank, Batmanghelich Kayhan

机构信息

School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15213, USA.

School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia.

出版信息

Med Phys. 2021 Mar;48(3):1168-1181. doi: 10.1002/mp.14673. Epub 2021 Jan 27.

Abstract

PURPOSE

To develop and evaluate a deep learning (DL) approach to extract rich information from high-resolution computed tomography (HRCT) of patients with chronic obstructive pulmonary disease (COPD).

METHODS

We develop a DL-based model to learn a compact representation of a subject, which is predictive of COPD physiologic severity and other outcomes. Our DL model learned: (a) to extract informative regional image features from HRCT; (b) to adaptively weight these features and form an aggregate patient representation; and finally, (c) to predict several COPD outcomes. The adaptive weights correspond to the regional lung contribution to the disease. We evaluate the model on 10 300 participants from the COPDGene cohort.

RESULTS

Our model was strongly predictive of spirometric obstruction (  =  0.67) and grouped 65.4% of subjects correctly and 89.1% within one stage of their GOLD severity stage. Our model achieved an accuracy of 41.7% and 52.8% in stratifying the population-based on centrilobular (5-grade) and paraseptal (3-grade) emphysema severity score, respectively. For predicting future exacerbation, combining subjects' representations from our model with their past exacerbation histories achieved an accuracy of 80.8% (area under the ROC curve of 0.73). For all-cause mortality, in Cox regression analysis, we outperformed the BODE index improving the concordance metric (ours: 0.61 vs BODE: 0.56).

CONCLUSIONS

Our model independently predicted spirometric obstruction, emphysema severity, exacerbation risk, and mortality from CT imaging alone. This method has potential applicability in both research and clinical practice.

摘要

目的

开发并评估一种深度学习(DL)方法,以从慢性阻塞性肺疾病(COPD)患者的高分辨率计算机断层扫描(HRCT)中提取丰富信息。

方法

我们开发了一种基于DL的模型,以学习受试者的紧凑表示,该表示可预测COPD的生理严重程度和其他结果。我们的DL模型学会了:(a)从HRCT中提取信息丰富的区域图像特征;(b)对这些特征进行自适应加权并形成综合的患者表示;最后,(c)预测几种COPD结果。自适应权重对应于区域肺对疾病的贡献。我们在来自COPDGene队列的10300名参与者上评估了该模型。

结果

我们的模型对肺量计阻塞具有很强的预测性( = 0.67),正确分组了65.4%的受试者,并且在其GOLD严重程度阶段的一个阶段内正确分组了89.1%的受试者。我们的模型在根据小叶中心性(5级)和间隔旁(3级)肺气肿严重程度评分对人群进行分层时,准确率分别达到41.7%和52.8%。对于预测未来加重情况,将我们模型中受试者的表示与他们过去的加重病史相结合,准确率达到80.8%(ROC曲线下面积为0.73)。对于全因死亡率,在Cox回归分析中,我们优于BODE指数,提高了一致性指标(我们的:0.61 vs BODE:0.56)。

结论

我们的模型仅通过CT成像就能独立预测肺量计阻塞、肺气肿严重程度、加重风险和死亡率。该方法在研究和临床实践中均具有潜在的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f70/7986385/7a3c7d979369/MP-48-1168-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验