Suppr超能文献

评估通过化学调谐控制介电击穿制造的纳米孔相关的 1/f 噪声。

Assessment of 1/f noise associated with nanopores fabricated through chemically tuned controlled dielectric breakdown.

机构信息

Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA.

Department of Bioengineering, University of Texas, Arlington, TX, USA.

出版信息

Electrophoresis. 2021 Apr;42(7-8):899-909. doi: 10.1002/elps.202000285. Epub 2021 Jan 6.

Abstract

Recently, we developed a fabrication method-chemically-tuned controlled dielectric breakdown (CT-CDB)-that produces nanopores (through thin silicon nitride membranes) surpassing legacy drawbacks associated with solid-state nanopores (SSNs). However, the noise characteristics of CT-CDB nanopores are largely unexplored. In this work, we investigated the 1/f noise of CT-CDB nanopores of varying solution pH, electrolyte type, electrolyte concentration, applied voltage, and pore diameter. Our findings indicate that the bulk Hooge parameter (α ) is about an order of magnitude greater than SSNs fabricated by transmission electron microscopy (TEM) while the surface Hooge parameter (α ) is ∼3 order magnitude greater. Theα of CT-CDB nanopores was ∼5 orders of magnitude greater than theirα , which suggests that the surface contribution plays a dominant role in 1/f noise. Experiments with DNA exhibited increasing capture rates with pH up to pH ∼8 followed by a drop at pH ∼9 perhaps due to the onset of electroosmotic force acting against the electrophoretic force. The1/f noise was also measured for several electrolytes and LiCl was found to outperform NaCl, KCl, RbCl, and CsCl. The 1/f noise was found to increase with the increasing electrolyte concentration and pore diameter. Taken together, the findings of this work suggest the pH approximate 7-8 range to be optimal for DNA sensing with CT-CDB nanopores.

摘要

最近,我们开发了一种制造方法——化学调控介电击穿(CT-CDB)——该方法可制造出超越传统固态纳米孔(SSN)相关缺陷的纳米孔(通过薄氮化硅膜)。然而,CT-CDB 纳米孔的噪声特性在很大程度上尚未得到探索。在这项工作中,我们研究了不同溶液 pH 值、电解质类型、电解质浓度、外加电压和孔径的 CT-CDB 纳米孔的 1/f 噪声。我们的研究结果表明,体 Hooge 参数(α)比通过透射电子显微镜(TEM)制造的 SSN 大约大一个数量级,而表面 Hooge 参数(α)大约大 3 个数量级。CT-CDB 纳米孔的α大约比它们的α大 5 个数量级,这表明表面贡献在 1/f 噪声中起主导作用。用 DNA 进行的实验表明,捕获率随 pH 值增加至 pH ∼8 后增加,随后在 pH ∼9 时下降,这可能是由于电渗流作用与电泳力相反而开始起作用。还测量了几种电解质的 1/f 噪声,发现 LiCl 的性能优于 NaCl、KCl、RbCl 和 CsCl。1/f 噪声随电解质浓度和孔径的增加而增加。总的来说,这项工作的研究结果表明,对于 CT-CDB 纳米孔的 DNA 传感,pH 值在 7-8 左右的范围是最佳的。

相似文献

1
Assessment of 1/f noise associated with nanopores fabricated through chemically tuned controlled dielectric breakdown.
Electrophoresis. 2021 Apr;42(7-8):899-909. doi: 10.1002/elps.202000285. Epub 2021 Jan 6.
2
Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown.
Biomed Microdevices. 2018 Apr 21;20(2):38. doi: 10.1007/s10544-018-0281-9.
5
Push-Button Method To Create Nanopores Using a Tesla-Coil Lighter.
ACS Omega. 2019 Jan 4;4(1):226-230. doi: 10.1021/acsomega.8b02660. eCollection 2019 Jan 31.
6
Chemically Functionalizing Controlled Dielectric Breakdown Silicon Nitride Nanopores by Direct Photohydrosilylation.
ACS Appl Mater Interfaces. 2019 Aug 21;11(33):30411-30420. doi: 10.1021/acsami.9b08004. Epub 2019 Aug 9.
7
Dynamics of DNA Through Solid-state Nanopores Fabricated by Controlled Dielectric Breakdown.
Chem Asian J. 2022 Dec 14;17(24):e202200888. doi: 10.1002/asia.202200888. Epub 2022 Nov 18.
8
Fast Fabrication of Solid-State Nanopores for DNA Molecule Analysis.
Nanomaterials (Basel). 2021 Sep 20;11(9):2450. doi: 10.3390/nano11092450.

引用本文的文献

1
Solid-State Nanopore Analysis of DNA-Templated Silver Nanoclusters: Voltage-Dependent Translocation and Electrolyte Stability.
ACS Appl Mater Interfaces. 2025 Jul 9;17(27):39407-39419. doi: 10.1021/acsami.5c02405. Epub 2025 May 27.
2
DNA Origami Incorporated into Solid-State Nanopores Enables Enhanced Sensitivity for Precise Analysis of Protein Translocations.
Anal Chem. 2024 Nov 5;96(44):17496-17505. doi: 10.1021/acs.analchem.4c02016. Epub 2024 Oct 17.

本文引用的文献

1
Chemically tailoring nanopores for single-molecule sensing and glycomics.
Anal Bioanal Chem. 2020 Oct;412(25):6639-6654. doi: 10.1007/s00216-020-02717-2. Epub 2020 Jun 1.
2
4
Mechanical characterization of vesicles and cells: A review.
Electrophoresis. 2020 Apr;41(7-8):449-470. doi: 10.1002/elps.201900362. Epub 2020 Feb 3.
6
Complex DNA knots detected with a nanopore sensor.
Nat Commun. 2019 Oct 2;10(1):4473. doi: 10.1038/s41467-019-12358-4.
7
Characterization of Flagellar Filaments and Flagellin through Optical Microscopy and Label-Free Nanopore Responsiveness.
Anal Chem. 2019 Nov 5;91(21):13665-13674. doi: 10.1021/acs.analchem.9b02874. Epub 2019 Oct 7.
9
Adsorption Kinetics in Open Nanopores as a Source of Low-Frequency Noise.
Nano Lett. 2019 Oct 9;19(10):7265-7272. doi: 10.1021/acs.nanolett.9b02858. Epub 2019 Sep 11.
10
Push-Button Method To Create Nanopores Using a Tesla-Coil Lighter.
ACS Omega. 2019 Jan 4;4(1):226-230. doi: 10.1021/acsomega.8b02660. eCollection 2019 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验